Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 151, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351008

RESUMO

BACKGROUND: Neuroblastoma (NB) represents the most frequent and aggressive form of extracranial solid tumor of infants. Although the overall survival of patients with NB has improved in the last years, more than 50% of high-risk patients still undergo a relapse. Thus, in the era of precision/personalized medicine, the need for high-risk NB patient-specific therapies is urgent. METHODS: Within the PeRsonalizEd Medicine (PREME) program, patient-derived NB tumors and bone marrow (BM)-infiltrating NB cells, derived from either iliac crests or tumor bone lesions, underwent to histological and to flow cytometry immunophenotyping, respectively. BM samples containing a NB cells infiltration from 1 to 50 percent, underwent to a subsequent NB cells enrichment using immune-magnetic manipulation. Then, NB samples were used for the identification of actionable targets and for the generation of 3D/tumor-spheres and Patient-Derived Xenografts (PDX) and Cell PDX (CPDX) preclinical models. RESULTS: Eighty-four percent of NB-patients showed potentially therapeutically targetable somatic alterations (including point mutations, copy number variations and mRNA over-expression). Sixty-six percent of samples showed alterations, graded as "very high priority", that are validated to be directly targetable by an approved drug or an investigational agent. A molecular targeted therapy was applied for four patients, while a genetic counseling was suggested to two patients having one pathogenic germline variant in known cancer predisposition genes. Out of eleven samples implanted in mice, five gave rise to (C)PDX, all preserved in a local PDX Bio-bank. Interestingly, comparing all molecular alterations and histological and immunophenotypic features among the original patient's tumors and PDX/CPDX up to second generation, a high grade of similarity was observed. Notably, also 3D models conserved immunophenotypic features and molecular alterations of the original tumors. CONCLUSIONS: PREME confirms the possibility of identifying targetable genomic alterations in NB, indeed, a molecular targeted therapy was applied to four NB patients. PREME paves the way to the creation of clinically relevant repositories of faithful patient-derived (C)PDX and 3D models, on which testing precision, NB standard-of-care and experimental medicines.


Assuntos
Variações do Número de Cópias de DNA , Neuroblastoma , Lactente , Humanos , Animais , Camundongos , Recidiva Local de Neoplasia , Neuroblastoma/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Modelos Animais de Doenças , Citometria de Fluxo
2.
Pharmacol Res ; 188: 106639, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36586642

RESUMO

Neuroblastoma is a biologically heterogeneous extracranial tumor, derived from the sympathetic nervous system, that affects most often the pediatric population. Therapeutic strategies relying on aggressive chemotherapy, surgery, radiotherapy, and immunotherapy have a negative outcome in advanced or recurrent disease. Here, spherical polymeric nanomedicines (SPN) are engineered to co-deliver a potent combination therapy, including the cytotoxic docetaxel (DTXL) and the natural wide-spectrum anti-inflammatory curcumin (CURC). Using an oil-in-water emulsion/solvent evaporation technique, four SPN configurations were engineered depending on the therapeutic payload and characterized for their physico-chemical and pharmacological properties. All SPN configurations presented a hydrodynamic diameter of ∼ 185 nm with a narrow size distribution. A biphasic release profile was observed for all the configurations, with almost 90 % of the total drug mass released within the first 24 h. SPN cytotoxic potential was assessed on a panel of human neuroblastoma cells, returning IC50 values in the order of 1 nM at 72 h and documenting a strong synergism between CURC and DTXL. Therapeutic efficacy was tested in a clinically relevant orthotopic model of neuroblastoma, following the injection of SH-SY5Y-Luc+ cells in the left adrenal gland of athymic mice. Although ∼ 2 % of the injected SPN per mass tissue reached the tumor, the overall survival of mice treated with CURC/DTXL-SPN was extended by 50 % and 25 % as compared to the untreated control and the monotherapies, respectively. In conclusion, these results demonstrate that the therapeutic potential of the DTXL/CURC combination can be fully exploited only by reformulating these two compounds into systemically injectable nanoparticles.


Assuntos
Antineoplásicos , Curcumina , Nanopartículas , Neuroblastoma , Criança , Humanos , Camundongos , Animais , Docetaxel/farmacologia , Neuroblastoma/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/química , Polímeros/química , Linhagem Celular Tumoral
3.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36232538

RESUMO

Neuroblastoma (NB) is the most common extracranial solid tumor encountered in childhood. Although there has been significant improvement in the outcomes of patients with high-risk disease, the prognosis for patients with metastatic relapse or refractory disease is poor. Hence, the clinical integration of genome sequencing into standard clinical practice is necessary in order to develop personalized therapy for children with relapsed or refractory disease. The PeRsonalizEdMEdicine (PREME) project focuses on the design of innovative therapeutic strategies for patients suffering from relapsed NB. We performed whole exome sequencing (WES) of patient-matched tumor-normal samples to identify genetic variants amenable to precision medicine. Specifically, two patients were studied (First case: a three-year-old male with early relapsed NB; Second case: a 20-year-old male who relapsed 10 years after the first diagnosis of NB). Results were reviewed by a multi-disciplinary molecular tumor board (MTB) and clinical reports were issued to the ordering physician. WES revealed the mutation c.G320C in the CUL4A gene in case 1 and the mutation c.A484G in the PSMC2 gene in case 2. Both patients were treated according to these actionable alterations, with promising results. The effective treatment of NB is one of the main challenges in pediatric oncology. In the era of precision medicine, the need to design new therapeutic strategies for NB is fundamental. Our results demonstrate the feasibility of incorporating clinical WES into pediatric oncology practice.


Assuntos
Neuroblastoma , Medicina de Precisão , Adulto , Criança , Pré-Escolar , Proteínas Culina/genética , Humanos , Masculino , Oncologia , Mutação , Recidiva Local de Neoplasia/genética , Medicina de Precisão/métodos , Sequenciamento do Exoma/métodos , Adulto Jovem
4.
Small ; 16(20): e1906426, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32323486

RESUMO

Neuroblastoma (NB) tumor substantially contributes to childhood cancer mortality. The design of novel drugs targeted to specific molecular alterations becomes mandatory, especially for high-risk patients burdened by chemoresistant relapse. The dysregulated expression of MYCN, ALK, and LIN28B and the diminished levels of miR-34a and let-7b are oncogenic in NB. Due to the ability of miRNA-mimics to recover the tumor suppression functions of miRNAs underexpressed into cancer cells, safe and efficient nanocarriers selectively targeted to NB cells and tested in clinically relevant mouse models are developed. The technology exploits the nucleic acids negative charges to build coated-cationic liposomes, then functionalized with antibodies against GD2 receptor. The replenishment of miR-34a and let-7b by NB-targeted nanoparticles, individually and more powerfully in combination, significantly reduces cell division, proliferation, neoangiogenesis, tumor growth and burden, and induces apoptosis in orthotopic xenografts and improves mice survival in pseudometastatic models. These functional effects highlight a cooperative down-modulation of MYCN and its down-stream targets, ALK and LIN28B, exerted by miR-34a and let-7b that reactivate regulatory networks leading to a favorable therapeutic response. These findings demonstrate a promising therapeutic efficacy of miR-34a and let-7b combined replacement and support its clinical application as adjuvant therapy for high-risk NB patients.


Assuntos
MicroRNAs , Nanopartículas , Neuroblastoma , Animais , Linhagem Celular Tumoral , Proliferação de Células , Criança , Humanos , Camundongos , MicroRNAs/genética , Recidiva Local de Neoplasia , Proteínas de Ligação a RNA
5.
J Nucl Cardiol ; 27(6): 2183-2194, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-30737636

RESUMO

BACKGROUND: Oxidative stress and its interference on myocardial metabolism play a major role in Doxorubicin (DXR) cardiotoxic cascade. METHODS: Mice models of neuroblastoma (NB) were treated with 5 mg DXR/kg, either free (Free-DXR) or encapsulated in untargeted (SL[DXR]) or in NB-targeting Stealth Liposomes (pep-SL[DXR] and TP-pep-SL[DXR]). Control mice received saline. FDG-PET was performed at baseline (PET1) and 7 days after therapy (PET2). At PET2 Troponin-I and NT-proBNP were assessed. Explanted hearts underwent biochemical, histological, and immunohistochemical analyses. Finally, FDG uptake and glucose consumption were simultaneously measured in cultured H9c2 in the presence/absence of Free-DXR (1 µM). RESULTS: Free-DXR significantly enhanced the myocardial oxidative stress. Myocardial-SUV remained relatively stable in controls and mice treated with liposomal formulations, while it significantly increased at PET2 with respect to baseline in Free-DXR. At this timepoint, myocardial-SUV was directly correlated with both myocardial redox stress and hexose-6-phosphate-dehydrogenase (H6PD) enzymatic activity, which selectively sustain cellular anti-oxidant mechanisms. Intriguingly, in vitro, Free-DXR selectively increased FDG extraction fraction without altering the corresponding value for glucose. CONCLUSION: The direct correlation between cardiac FDG uptake and oxidative stress indexes supports the potential role of FDG-PET as an early biomarker of DXR oxidative damage.


Assuntos
Doxorrubicina/química , Fluordesoxiglucose F18/farmacocinética , Coração/efeitos dos fármacos , Miocárdio/patologia , Estresse Oxidativo , Animais , Antioxidantes , Biomarcadores/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Glucose/química , Glucose/farmacocinética , Humanos , Imuno-Histoquímica , Cinética , Camundongos , Camundongos Nus , Neuroblastoma/tratamento farmacológico , Oxirredução , Tomografia por Emissão de Pósitrons
6.
Molecules ; 25(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927825

RESUMO

Nanomedicine, the application of nanotechnology at the level of one billionth of a millimeter to medicine, has inspired great interest in the last twenty years, leading to the commercialization of successful products both from a clinical and an economic point of view [...].


Assuntos
Neoplasias/diagnóstico , Neoplasias/terapia , Medicina de Precisão , Nanomedicina Teranóstica , Humanos , Medicina de Precisão/métodos , Nanomedicina Teranóstica/métodos
7.
Int J Cancer ; 144(12): 3146-3159, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30536898

RESUMO

High-risk neuroblastoma, a predominantly TP53 wild-type (wt) tumour, is incurable in >50% patients supporting the use of MDM2 antagonists as novel therapeutics. Idasanutlin (RG7388) shows in vitro synergy with chemotherapies used to treat neuroblastoma. This is the first study to evaluate the in vivo efficacy of the intravenous idasanutlin prodrug, RO6839921 (RG7775), both alone and in combination with temozolomide in TP53 wt orthotopic neuroblastoma models. Detection of active idasanutlin using liquid chromatography-mass spectrometry and p53 pathway activation by ELISA assays and Western analysis showed peak plasma levels 1 h post-treatment with maximal p53 pathway activation 3-6 h post-treatment. RO6839921 and temozolomide, alone or in combination in mice implanted with TP53 wt SHSY5Y-Luc and NB1691-Luc cells showed that combined RO6839921 and temozolomide led to greater tumour growth inhibition and increase in survival compared to vehicle control. Overall, RO6839921 had a favourable pharmacokinetic profile consistent with intermittent dosing and was well tolerated alone and in combination. These preclinical studies support the further development of idasanutlin in combination with temozolomide in neuroblastoma in early phase clinical trials.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neuroblastoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Pirrolidinas/farmacologia , Temozolomida/farmacologia , para-Aminobenzoatos/farmacologia , Animais , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Humanos , Camundongos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Pirrolidinas/farmacocinética , Distribuição Aleatória , Temozolomida/administração & dosagem , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , para-Aminobenzoatos/farmacocinética
8.
Small ; 15(10): e1804591, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30706636

RESUMO

Neuroblastoma is a rare pediatric cancer characterized by a wide clinical behavior and adverse outcome despite aggressive therapies. New approaches based on targeted drug delivery may improve efficacy and decrease toxicity of cancer therapy. Furthermore, nanotechnology offers additional potential developments for cancer imaging, diagnosis, and treatment. Following these lines, in the past years, innovative therapies based on the use of liposomes loaded with anticancer agents and functionalized with peptides capable of recognizing neuroblastoma cells and/or tumor-associated endothelial cells have been developed. Studies performed in experimental orthotopic models of human neuroblastoma have shown that targeted nanocarriers can be exploited for not only decreasing the systemic toxicity of the encapsulated anticancer drugs, but also increasing their tumor homing properties, enhancing tumor vascular permeability and perfusion (and, consequently, drug penetration), inducing tumor apoptosis, inhibiting angiogenesis, and reducing tumor glucose consumption. Furthermore, peptide-tagged liposomal formulations are proved to be more efficacious in inhibiting tumor growth and metastatic spreading of neuroblastoma than nontargeted liposomes. These findings, herein reviewed, pave the way for the design of novel targeted liposomal nanocarriers useful for multitargeting treatment of neuroblastoma.


Assuntos
Lipossomos/química , Neuroblastoma/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Bortezomib/química , Bortezomib/uso terapêutico , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Fenretinida/química , Fenretinida/uso terapêutico , Humanos
9.
Molecules ; 24(9)2019 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-31060218

RESUMO

Natural compounds are emerging as agents for the treatment of malignant diseases. We previously showed that extracts from in vitro cell suspension cultures of strawberry reduced murine melanoma cell proliferation, as shown for fruit extracts. In this work, chromatographic, mass spectrometric, and spectrophotometric analyses were carried out to identify the bioactive compound exerting the detected cytotoxic activity. Moreover, aiming to confirm the anti-proliferative activity of the extracts against both paediatric and adult human tumors, cytotoxic experiments were performed on neuroblastoma, colon, and cervix carcinoma cell lines. Extracts from in vitro cell suspension cultures of strawberry induced a statistically significant reduction of cell growth in all the tumor cell lines tested. Interestingly, human fibroblasts from healthy donors were not subjected to this cytotoxic effect, highlighting the importance of further preclinical investigations. The accurate mass measurement, fragmentation patterns, and characteristic mass spectra and mass losses, together with the differences in chromatographic retention times and absorbance spectra, led us to hypothesize that the compound acting as an anti-proliferative agent could be a novel acetal dihydrofurofuran derivative (C8H10O3, molecular mass 154.0630 amu).


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Extratos Celulares/farmacologia , Fragaria/citologia , Neoplasias/tratamento farmacológico , Adulto , Antineoplásicos Fitogênicos/química , Extratos Celulares/química , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Criança , Ensaios de Seleção de Medicamentos Antitumorais , Fragaria/química , Humanos
10.
Small ; 14(45): e1802886, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30294852

RESUMO

Targeted delivery of anticancer drugs with nanocarriers can reduce side effects and ameliorate therapeutic efficacy. However, poorly perfused and dysfunctional tumor vessels limit the transport of the payload into solid tumors. The use of tumor-penetrating nanocarriers might enhance tumor uptake and antitumor effects. A peptide containing a tissue-penetrating (TP) consensus motif, capable of recognizing neuropilin-1, is here fused to a neuroblastoma-targeting peptide (pep) previously developed. Neuroblastoma cell lines and cells derived from both xenografts and high-risk neuroblastoma patients show overexpression of neuropilin-1. In vitro studies reveal that TP-pep binds cell lines and cells derived from neuroblastoma patients more efficiently than pep. TP-pep, after coupling to doxorubicin-containing stealth liposomes (TP-pep-SL[doxorubicin]), enhances their uptake by cells and cytotoxic effects in vitro, while increasing tumor-binding capability and homing in vivo. TP-pep-SL[doxorubicin] treatment enhances the Evans Blue dye accumulation in tumors but not in nontumor tissues, pointing to selective increase of vascular permeability in tumor tissues. Compared to pep-SL[doxorubicin], TP-pep-SL[doxorubicin] shows an increased antineuroblastoma activity in three neuroblastoma animal models mimicking the growth of neuroblastoma in humans. The enhancement of drug penetration in tumors by TP-pep-targeted nanoparticles may represent an innovative strategy for neuroblastoma.


Assuntos
Antineoplásicos/uso terapêutico , Nanopartículas/química , Neuroblastoma/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Neuroblastoma/metabolismo , Neuropilina-1/metabolismo , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Int J Mol Sci ; 19(7)2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973487

RESUMO

Macrophages, cells belonging to the innate immune system, present a high plasticity grade, being able to change their phenotype in response to environmental stimuli. They play central roles during development, homeostatic tissue processes, tissue repair, and immunity. Furthermore, it is recognized that macrophages are involved in chronic inflammation and that they play central roles in inflammatory diseases and cancer. Due to their large involvement in the pathogenesis of several types of human diseases, macrophages are considered to be relevant therapeutic targets. Nanotechnology-based systems have attracted a lot of attention in this field, gaining a pivotal role as useful moieties to target macrophages in diseased tissues. Among the different approaches that can target macrophages, the most radical is represented by their depletion, commonly obtained by means of clodronate-containing liposomal formulations and/or depleting antibodies. These strategies have produced encouraging results in experimental mouse models. In this review, we focus on macrophage targeting, based on the results so far obtained in preclinical models of inflammatory diseases and cancer. Pros and cons of these therapeutic interventions will be highlighted.


Assuntos
Inflamação/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Animais , Ácido Clodrônico/uso terapêutico , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Humanos , Inflamação/imunologia , Lipossomos , Macrófagos/imunologia , Camundongos , Nanotecnologia , Neoplasias/imunologia
12.
Adv Funct Mater ; 27(36)2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28979182

RESUMO

NGR (asparagine-glycine-arginine) is a tumor vasculature-homing peptide motif widely used for the functionalization of drugs, nanomaterials and imaging compounds for cancer treatment and diagnosis. Unfortunately, this motif has a strong propensity to undergo rapid deamidation. This reaction, which converts NGR into isoDGR, is associated with receptor switching from CD13 to integrins, with potentially important manufacturing, pharmacological and toxicological implications. It is found that glycine N-methylation of NGR-tagged nanocarriers completely prevents asparagine deamidation without impairing CD13 recognition. Studies in animal models have shown that the methylated NGR motif can be exploited for delivering radiolabeled compounds and nanocarriers, such as tumor necrosis factor-α (TNF)-bearing nanogold and liposomal doxorubicin, to tumors with improved selectivity. These findings suggest that this NGR derivative is a stable and efficient tumor-homing ligand that can be used for delivering functional nanomaterials to tumor vasculature.

13.
Molecules ; 20(9): 15893-909, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26340616

RESUMO

Despite palliative treatments, glioblastoma (GBM) remains a devastating malignancy with a mean survival of about 15 months after diagnosis. Programmed cell-death is de-regulated in almost all GBM and the re-activation of the mitochondrial apoptotic pathway through exogenous bioactive proteins may represent a powerful therapeutic tool to treat multidrug resistant GBM. We have reported that human Bak protein integrated in Liposomes (LB) was able, in vitro, to activate the mitochondrial apoptotic pathway in colon cancer cells. To evaluate the anti-tumor effects of LB on GBM, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays and Western blot analysis were performed on GL26 murine cell line. LB treatment shows a dose-dependent inhibition of cell viability, followed by an up-regulation of Bax and a down-modulation of JNK1 proteins. In GL26-bearing mice, two different routes of administration were tested: intra-tumor and intravenous. Biodistribution, tumor growth and animal survival rates were followed. LB show long-lasting tumor accumulation. Moreover, the intra-tumor administration of LB induces tumor growth delay and total tumor regression in about 40% of treated mice, while the intravenous injection leads to a significant increased life span of mice paralleled by an increased tumor cells apoptosis. Our findings are functional to the design of LB with potentiated therapeutic efficacy for GBM.


Assuntos
Glioblastoma/tratamento farmacológico , Proteolipídeos/química , Proteína Killer-Antagonista Homóloga a bcl-2/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Lipossomos , Camundongos
14.
Cell Mol Life Sci ; 69(16): 2791-803, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22415324

RESUMO

Chromogranin A (CgA), a secretory protein expressed by many neuroendocrine cells, neurons, cardiomyocytes, and keratinocytes, is the precursor of various peptides that regulate the carbohydrate/lipid metabolism and the cardiovascular system. We have found that CgA, locally administered to injured mice, can accelerate keratinocyte proliferation and wound healing. This biological activity was abolished by the Asp(45)Glu mutation. CgA and its N-terminal fragments, but not the corresponding Asp(45)Glu mutants, could selectively recognize the αvß6-integrin on keratinocytes (a cell-adhesion receptor that is up-regulated during wound healing) and regulate keratinocyte adhesion, proliferation, and migration. No binding was observed to other integrins such as αvß3, αvß5, αvß8, α5ß1, α1ß1, α3ß1, α6ß4, α6ß7 and α9ß1. Structure-activity studies showed that the entire CgA(39-63) region is crucial for αvß6 recognition (K(i) = 7 nM). This region contains an RGD site (residues CgA(43-45)) followed by an amphipathic α-helix (residues CgA(47-63)), both crucial for binding affinity and selectivity. These results suggest that the interaction of the RGD/α-helix motif of CgA with αvß6 regulates keratinocyte physiology in wound healing.


Assuntos
Antígenos de Neoplasias/metabolismo , Cromogranina A/metabolismo , Fibroblastos/metabolismo , Integrinas/metabolismo , Queratinócitos/metabolismo , Oligopeptídeos/metabolismo , Pele/metabolismo , Cicatrização/fisiologia , Sequência de Aminoácidos , Animais , Ligação Competitiva , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Fibroblastos/citologia , Humanos , Queratinócitos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Fragmentos de Peptídeos/metabolismo , Secretina/análogos & derivados , Secretina/metabolismo , Homologia de Sequência de Aminoácidos , Pele/citologia
15.
J Immunother Cancer ; 11(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37775116

RESUMO

INTRODUCTION: B7-H3 is a potential target for pediatric cancers, including neuroblastoma (NB). Vobramitamab duocarmazine (also referred to as MGC018 and herein referred to as vobra duo) is an investigational duocarmycin-based antibody-drug conjugate (ADC) directed against the B7-H3 antigen. It is composed of an anti-B7-H3 humanized IgG1/kappa monoclonal antibody chemically conjugated through a cleavable valine-citrulline linker to a duocarmycin-hydroxybenzamide azaindole (vc-seco-DUBA). Vobra duo has shown preliminary clinical activity in B7-H3-expressing tumors. METHODS: B7-H3 expression was evaluated by flow-cytometry in a panel of human NB cell lines. Cytotoxicity was evaluated in monolayer and in multicellular tumor spheroid (MCTS) models by the water-soluble tetrazolium salt,MTS, proliferation assay and Cell Titer Glo 3D cell viability assay, respectively. Apoptotic cell death was investigated by annexin V staining. Orthotopic, pseudometastatic, and resected mouse NB models were developed to mimic disease conditions related to primary tumor growth, metastases, and circulating tumor cells with minimal residual disease, respectively. RESULTS: All human NB cell lines expressed cell surface B7-H3 in a unimodal fashion. Vobra duo was cytotoxic in a dose-dependent and time-dependent manner against all cell lines (IC50 range 5.1-53.9 ng/mL) and NB MCTS (IC50 range 17.8-364 ng/mL). Vobra duo was inactive against a murine NB cell line (NX-S2) that did not express human B7-H3; however, NX-S2 cells were killed in the presence of vobra duo when co-cultured with human B7-H3-expressing cells, demonstrating bystander activity. In orthotopic and pseudometastatic mouse models, weekly intravenous treatments with 1 mg/kg vobra duo for 3 weeks delayed tumor growth compared with animals treated with an irrelevant (anti-CD20) duocarmycin-ADC. Vobra duo treatment for 4 weeks further increased survival in both orthotopic and resected NB models. Vobra duo compared favorably to TOpotecan-TEMozolomide (TOTEM), the standard-of-care therapy for NB relapsed disease, with tumor relapse delayed or arrested by two or three repeated 4-week vobra duo treatments, respectively. Further increased survival was observed in mice treated with vobra duo in combination with TOTEM. Vobra duo treatment was not associated with body weight loss, hematological toxicity, or clinical chemistry abnormalities. CONCLUSION: Vobra duo exerts relevant antitumor activity in preclinical B7-H3-expressing NB models and represents a potential candidate for clinical translation.


Assuntos
Antineoplásicos , Imunoconjugados , Neuroblastoma , Criança , Humanos , Camundongos , Animais , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Duocarmicinas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antígenos B7/metabolismo , Anticorpos Monoclonais Humanizados
16.
Cancers (Basel) ; 15(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36765519

RESUMO

Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. Patients with relapsed/refractory disease have a poor prognosis, and additional therapeutic options are needed. Mutations and amplifications in the ALK (Anaplastic Lymphoma Kinase) gene constitute a key target for treatment. Our goal, within the Italian project of PeRsonalizEdMEdicine (PREME), was to evaluate the genomic status of patients with relapsed/refractory NB and to implement targeted therapies in those with targetable mutations. From November 2018 to November 2021, we performed Whole Exome Sequencing or Targeted Gene Panel Sequencing in relapsed/refractory NB patients in order to identify druggable variants. Activating mutations of ALK were identified in 8(28.57%) of 28 relapsed/refractory NB patients. The mutation p.F1174L was found in six patients, whereas p.R1275Q was found in one and the unknown mutation p.S104R in another. Three patients died before treatment could be started, while five patients received crizotinib: two in monotherapy (one with p.F1174L and the other with p.S104R) and three (with p.F1174L variant) in combination with chemotherapy. All treated patients showed a clinical improvement, and one had complete remission after two cycles of combined treatment. The most common treatment-related toxicities were hematological. ALK inhibitors may play an important role in the treatment of ALK-mutated NB patients.

17.
Med Res Rev ; 32(5): 1078-91, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21287572

RESUMO

Delivery and penetration of chemotherapeutic drugs into tumors are limited by a number of factors related to abnormal vasculature and altered stroma composition in neoplastic tissues. Coupling of chemotherapeutic drugs with tumor vasculature-homing peptides or administration of drugs in combination with biological agents that affect the integrity of the endothelial lining of tumor vasculature is an appealing strategy to improve drug delivery to tumor cells. Promising approaches to achieve this goal are based on the use of Asn-Gly-Arg (NGR)-containing peptides as ligands for drug delivery and of NGR-TNF, a peptide-tumor necrosis factor-α fusion protein that selectively alters drug penetration barriers and that is currently tested in a randomized Phase III trial in patients with malignant pleural mesothelioma.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Ensaios Clínicos como Assunto , Humanos , Ligantes , Neoplasias/irrigação sanguínea , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/uso terapêutico , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/uso terapêutico
18.
Mol Ther ; 19(12): 2201-12, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21829174

RESUMO

The anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor that is involved in the pathogenesis of different types of human cancers, including neuroblastoma (NB). In NB, ALK overexpression, or point mutations, are associated with poor prognosis and advanced stage disease. Inhibition of ALK kinase activity by small-molecule inhibitors in lung cancers carrying ALK translocations has shown therapeutic potential. However, secondary mutations may occur that, generate tumor resistance to ALK inhibitors. To overcome resistance to ALK inhibitors in NB, we adopted an alternative RNA interference (RNAi)-based therapeutic strategy that is able to knockdown ALK, regardless of its genetic status [mutated, amplified, wild-type (WT)]. NB cell lines, transduced by lentiviral short hairpin RNA (shRNA), showed reduced proliferation and increased apoptosis when ALK was knocked down. In mice, a nanodelivery system for ALK-specific small interfering RNA (siRNA), based on the conjugation of antibodies directed against the NB-selective marker GD(2) to liposomes, showed strong ALK knockdown in vivo in NB cells, which resulted in cell growth arrest, apoptosis, and prolonged survival. ALK knockdown was associated with marked reductions in vascular endothelial growth factor (VEGF) secretion, blood vessel density, and matrix metalloproteinases (MMPs) expression in vivo, suggesting a role for ALK in NB-induced neoangiogenesis and tumor invasion, confirming this gene as a fundamental oncogene in NB.


Assuntos
Apoptose , Mutação/genética , Neovascularização Patológica/prevenção & controle , Neuroblastoma/irrigação sanguínea , Neuroblastoma/terapia , RNA Interferente Pequeno/genética , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Quinase do Linfoma Anaplásico , Animais , Western Blotting , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Gangliosídeos/imunologia , Gangliosídeos/metabolismo , Células HeLa , Humanos , Técnicas Imunoenzimáticas , Lipossomos , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Nus , Camundongos SCID , Neuroblastoma/mortalidade , Fosforilação , Interferência de RNA , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Taxa de Sobrevida
19.
Mol Ther ; 19(6): 1131-40, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21487394

RESUMO

RNA interference molecules have some advantages as cancer therapeutics, including a proved efficacy on both wild-type (WT) and mutated transcripts and an extremely high sequence-specificity. The most significant hurdle to be overcome if exogenous small interfering RNAs (siRNA) is to be used therapeutically is the specific, effective, nontoxic delivery of siRNA to its intracellular site of action. At present, human applications are confined almost exclusively to targets within the liver, where the delivery systems naturally accumulate, and extra-hepatic targets remain a challenge. Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that has recently been shown to contribute to the cell growth and progression of human neuroblastoma (NB). We investigated its potential as a therapeutic target in NB by generating anti-GD2-targeted nanoparticles that carry ALK-directed siRNA, which are specifically and efficiently delivered to GD2-expressing NB cells. Relative to free ALK-siRNA, anti-GD2-targeted liposomal formulations of ALK-siRNA had low plasma clearance, increased siRNA stability, and improved binding, uptake, silencing and induction of cell death, and specificity for NB cells. In NB xenografts, intravenous (i.v.) injection of the targeted ALK-siRNA liposomes showed gene-specific antitumor activity with no side effects. ALK-selective siRNA entrapped in anti-GD2-targeted nanoparticles is a promising new modality for NB treatment.


Assuntos
Neuroblastoma/enzimologia , Neuroblastoma/terapia , RNA Interferente Pequeno/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Quinase do Linfoma Anaplásico , Animais , Western Blotting , Linhagem Celular , Inativação Gênica/fisiologia , Humanos , Camundongos , Camundongos Nus , Nanopartículas/química , Neuroblastoma/genética , RNA Interferente Pequeno/genética , Receptores Proteína Tirosina Quinases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Biomedicines ; 10(5)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35625850

RESUMO

Cancer, the second leading cause of death worldwide, continues to represent an impressive challenge for researchers and clinicians [...].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA