Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 184(17): 4447-4463.e20, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34363755

RESUMO

TANK binding kinase 1 (TBK1) regulates IFN-I, NF-κB, and TNF-induced RIPK1-dependent cell death (RCD). In mice, biallelic loss of TBK1 is embryonically lethal. We discovered four humans, ages 32, 26, 7, and 8 from three unrelated consanguineous families with homozygous loss-of-function mutations in TBK1. All four patients suffer from chronic and systemic autoinflammation, but not severe viral infections. We demonstrate that TBK1 loss results in hypomorphic but sufficient IFN-I induction via RIG-I/MDA5, while the system retains near intact IL-6 induction through NF-κB. Autoinflammation is driven by TNF-induced RCD as patient-derived fibroblasts experienced higher rates of necroptosis in vitro, and CC3 was elevated in peripheral blood ex vivo. Treatment with anti-TNF dampened the baseline circulating inflammatory profile and ameliorated the clinical condition in vivo. These findings highlight the plasticity of the IFN-I response and underscore a cardinal role for TBK1 in the regulation of RCD.


Assuntos
Inflamação/enzimologia , Proteínas Serina-Treonina Quinases/deficiência , Fator de Necrose Tumoral alfa/farmacologia , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Autoimunidade/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Morte Celular/efeitos dos fármacos , Citocinas/metabolismo , Enzima Desubiquitinante CYLD/metabolismo , Feminino , Células HEK293 , Homozigoto , Humanos , Quinase I-kappa B/metabolismo , Imunofenotipagem , Inflamação/patologia , Interferon Tipo I/metabolismo , Interferon gama/metabolismo , Mutação com Perda de Função/genética , Masculino , Linhagem , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Receptor 3 Toll-Like/metabolismo , Transcriptoma/genética , Vesiculovirus/efeitos dos fármacos , Vesiculovirus/fisiologia
2.
Cell ; 183(4): 982-995.e14, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32991843

RESUMO

Initially, children were thought to be spared from disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, a month into the epidemic, a novel multisystem inflammatory syndrome in children (MIS-C) emerged. Herein, we report on the immune profiles of nine MIS-C cases. All MIS-C patients had evidence of prior SARS-CoV-2 exposure, mounting an antibody response with intact neutralization capability. Cytokine profiling identified elevated signatures of inflammation (IL-18 and IL-6), lymphocytic and myeloid chemotaxis and activation (CCL3, CCL4, and CDCP1), and mucosal immune dysregulation (IL-17A, CCL20, and CCL28). Immunophenotyping of peripheral blood revealed reductions of non-classical monocytes, and subsets of NK and T lymphocytes, suggesting extravasation to affected tissues. Finally, profiling the autoantigen reactivity of MIS-C plasma revealed both known disease-associated autoantibodies (anti-La) and novel candidates that recognize endothelial, gastrointestinal, and immune-cell antigens. All patients were treated with anti-IL-6R antibody and/or IVIG, which led to rapid disease resolution.


Assuntos
Inflamação/patologia , Síndrome de Resposta Inflamatória Sistêmica/patologia , Adolescente , Anticorpos Antivirais/sangue , Autoanticorpos/sangue , Betacoronavirus/imunologia , Betacoronavirus/isolamento & purificação , COVID-19 , Quimiocina CCL3/metabolismo , Criança , Pré-Escolar , Infecções por Coronavirus/complicações , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Feminino , Humanos , Imunidade Humoral , Lactente , Recém-Nascido , Inflamação/metabolismo , Interleucina-17/metabolismo , Interleucina-18/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Masculino , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/patologia , Pneumonia Viral/virologia , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Adulto Jovem
4.
Mol Cell ; 83(23): 4255-4271.e9, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37995687

RESUMO

Endogenous retroviruses (ERVs) are remnants of ancient parasitic infections and comprise sizable portions of most genomes. Although epigenetic mechanisms silence most ERVs by generating a repressive environment that prevents their expression (heterochromatin), little is known about mechanisms silencing ERVs residing in open regions of the genome (euchromatin). This is particularly important during embryonic development, where induction and repression of distinct classes of ERVs occur in short temporal windows. Here, we demonstrate that transcription-associated RNA degradation by the nuclear RNA exosome and Integrator is a regulatory mechanism that controls the productive transcription of most genes and many ERVs involved in preimplantation development. Disrupting nuclear RNA catabolism promotes dedifferentiation to a totipotent-like state characterized by defects in RNAPII elongation and decreased expression of long genes (gene-length asymmetry). Our results indicate that RNA catabolism is a core regulatory module of gene networks that safeguards RNAPII activity, ERV expression, cell identity, and developmental potency.


Assuntos
Retrovirus Endógenos , Retrovirus Endógenos/genética , RNA Nuclear , Epigênese Genética , Heterocromatina , Expressão Gênica
5.
Nature ; 615(7951): 305-314, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36813963

RESUMO

Down's syndrome (DS) presents with a constellation of cardiac, neurocognitive and growth impairments. Individuals with DS are also prone to severe infections and autoimmunity including thyroiditis, type 1 diabetes, coeliac disease and alopecia areata1,2. Here, to investigate the mechanisms underlying autoimmune susceptibility, we mapped the soluble and cellular immune landscape of individuals with DS. We found a persistent elevation of up to 22 cytokines at steady state (at levels often exceeding those in patients with acute infection) and detected basal cellular activation: chronic IL-6 signalling in CD4 T cells and a high proportion of plasmablasts and CD11c+TbethighCD21low B cells (Tbet is also known as TBX21). This subset is known to be autoimmune-prone and displayed even greater autoreactive features in DS including receptors with fewer non-reference nucleotides and higher IGHV4-34 utilization. In vitro, incubation of naive B cells in the plasma of individuals with DS or with IL-6-activated T cells resulted in increased plasmablast differentiation compared with control plasma or unstimulated T cells, respectively. Finally, we detected 365 auto-antibodies in the plasma of individuals with DS, which targeted the gastrointestinal tract, the pancreas, the thyroid, the central nervous system, and the immune system itself. Together, these data point to an autoimmunity-prone state in DS, in which a steady-state cytokinopathy, hyperactivated CD4 T cells and ongoing B cell activation all contribute to a breach in immune tolerance. Our findings also open therapeutic paths, as we demonstrate that T cell activation is resolved not only with broad immunosuppressants such as Jak inhibitors, but also with the more tailored approach of IL-6 inhibition.


Assuntos
Autoimunidade , Linfócitos T CD4-Positivos , Citocinas , Síndrome de Down , Humanos , Autoanticorpos/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Citocinas/análise , Citocinas/imunologia , Suscetibilidade a Doenças , Síndrome de Down/imunologia , Síndrome de Down/fisiopatologia , Interleucina-6/imunologia , Receptores de Complemento 3d
6.
PLoS Pathog ; 18(4): e1010464, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35421191

RESUMO

Interferons establish an antiviral state through the induction of hundreds of interferon-stimulated genes (ISGs). The mechanisms and viral specificities for most ISGs remain incompletely understood. To enable high-throughput interrogation of ISG antiviral functions in pooled genetic screens while mitigating potentially confounding effects of endogenous interferon and antiproliferative/proapoptotic ISG activities, we adapted a CRISPR-activation (CRISPRa) system for inducible ISG expression in isogenic cell lines with and without the capacity to respond to interferons. We used this platform to screen for ISGs that restrict SARS-CoV-2. Results included ISGs previously described to restrict SARS-CoV-2 and novel candidate antiviral factors. We validated a subset of these by complementary CRISPRa and cDNA expression experiments. OAS1, a top-ranked hit across multiple screens, exhibited strong antiviral effects against SARS-CoV-2, which required OAS1 catalytic activity. These studies demonstrate a high-throughput approach to assess antiviral functions within the ISG repertoire, exemplified by identification of multiple SARS-CoV-2 restriction factors.


Assuntos
2',5'-Oligoadenilato Sintetase , COVID-19 , Interferons , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Antivirais/farmacologia , COVID-19/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Interferons/metabolismo , SARS-CoV-2/genética
7.
PLoS Pathog ; 18(3): e1010405, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35333911

RESUMO

Type I interferons (IFN-Is) are a group of potent inflammatory and antiviral cytokines. They induce IFN stimulated genes (ISGs), which act as proinflammatory mediators, antiviral effectors, and negative regulators of the IFN-I signaling cascade itself. One such regulator is interferon stimulated gene 15 (ISG15). Humans with complete ISG15 deficiency express persistently elevated levels of ISGs, and consequently, exhibit broad spectrum resistance to viral infection. Here, we demonstrate that IFN-I primed fibroblasts derived from ISG15-deficient individuals are more resistant to infection with single-cycle HIV-1 compared to healthy control fibroblasts. Complementation with both wild-type (WT) ISG15 and ISG15ΔGG (incapable of ISGylation while retaining negative regulation activity) was sufficient to reverse this phenotype, restoring susceptibility to infection to levels comparable to WT cells. Furthermore, CRISPR-edited ISG15ko primary CD4+ T cells were less susceptible to HIV-1 infection compared to cells treated with non-targeting controls. Transcriptome analysis of these CRISPR-edited ISG15ko primary CD4+ T cells recapitulated the ISG signatures of ISG15 deficient patients. Taken together, we document that the increased broad-spectrum viral resistance in ISG15-deficiency also extends to HIV-1 and is driven by a combination of T-cell-specific ISGs, with both known and unknown functions, predicted to target HIV-1 replication at multiple steps.


Assuntos
Citocinas , Infecções por HIV , HIV-1 , Ubiquitinas , Antivirais/farmacologia , Citocinas/genética , Infecções por HIV/genética , Humanos , Interferon Tipo I , Ubiquitinas/genética
8.
Respir Res ; 24(1): 213, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37635251

RESUMO

BACKGROUND: The airway epithelium is composed of diverse cell types with specialized functions that mediate homeostasis and protect against respiratory pathogens. Human airway epithelial (HAE) cultures at air-liquid interface are a physiologically relevant in vitro model of this heterogeneous tissue and have enabled numerous studies of airway disease. HAE cultures are classically derived from primary epithelial cells, the relatively limited passage capacity of which can limit experimental methods and study designs. BCi-NS1.1, a previously described and widely used basal cell line engineered to express hTERT, exhibits extended passage lifespan while retaining the capacity for differentiation to HAE. However, gene expression and innate immune function in BCi-NS1.1-derived versus primary-derived HAE cultures have not been fully characterized. METHODS: BCi-NS1.1-derived HAE cultures (n = 3 independent differentiations) and primary-derived HAE cultures (n = 3 distinct donors) were characterized by immunofluorescence and single cell RNA-Seq (scRNA-Seq). Innate immune functions were evaluated in response to interferon stimulation and to infection with viral and bacterial respiratory pathogens. RESULTS: We confirm at high resolution that BCi-NS1.1- and primary-derived HAE cultures are largely similar in morphology, cell type composition, and overall gene expression patterns. While we observed cell-type specific expression differences of several interferon stimulated genes in BCi-NS1.1-derived HAE cultures, we did not observe significant differences in susceptibility to infection with influenza A virus and Staphylococcus aureus. CONCLUSIONS: Taken together, our results further support BCi-NS1.1-derived HAE cultures as a valuable tool for the study of airway infectious disease.


Assuntos
Células Epiteliais , Interferons , Humanos , Epitélio , Diferenciação Celular , Expressão Gênica
9.
Proc Natl Acad Sci U S A ; 117(45): 28344-28354, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33097660

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic that is a serious global health problem. Evasion of IFN-mediated antiviral signaling is a common defense strategy that pathogenic viruses use to replicate and propagate in their host. In this study, we show that SARS-CoV-2 is able to efficiently block STAT1 and STAT2 nuclear translocation in order to impair transcriptional induction of IFN-stimulated genes (ISGs). Our results demonstrate that the viral accessory protein Orf6 exerts this anti-IFN activity. We found that SARS-CoV-2 Orf6 localizes at the nuclear pore complex (NPC) and directly interacts with Nup98-Rae1 via its C-terminal domain to impair docking of cargo-receptor (karyopherin/importin) complex and disrupt nuclear import. In addition, we show that a methionine-to-arginine substitution at residue 58 impairs Orf6 binding to the Nup98-Rae1 complex and abolishes its IFN antagonistic function. All together our data unravel a mechanism of viral antagonism in which a virus hijacks the Nup98-Rae1 complex to overcome the antiviral action of IFN.


Assuntos
COVID-19/metabolismo , Interferons/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Proteínas Virais/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Sítios de Ligação , Chlorocebus aethiops , Células HEK293 , Humanos , Proteínas Associadas à Matriz Nuclear/química , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Ligação Proteica , Transdução de Sinais , Células Vero
10.
J Virol ; 95(23): e0125721, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34523966

RESUMO

SARS-CoV-2, the etiological agent of COVID-19, is characterized by a delay in type I interferon (IFN-I)-mediated antiviral defenses alongside robust cytokine production. Here, we investigate the underlying molecular basis for this imbalance and implicate virus-mediated activation of NF-κB in the absence of other canonical IFN-I-related transcription factors. Epigenetic and single-cell transcriptomic analyses show a selective NF-κB signature that was most prominent in infected cells. Disruption of NF-κB signaling through the silencing of the NF-κB transcription factor p65 or p50 resulted in loss of virus replication that was rescued upon reconstitution. These findings could be further corroborated with the use of NF-κB inhibitors, which reduced SARS-CoV-2 replication in vitro. These data suggest that the robust cytokine production in response to SARS-CoV-2, despite a diminished IFN-I response, is the product of a dependency on NF-κB for viral replication. IMPORTANCE The COVID-19 pandemic has caused significant mortality and morbidity around the world. Although effective vaccines have been developed, large parts of the world remain unvaccinated while new SARS-CoV-2 variants keep emerging. Furthermore, despite extensive efforts and large-scale drug screenings, no fully effective antiviral treatment options have been discovered yet. Therefore, it is of the utmost importance to gain a better understanding of essential factors driving SARS-CoV-2 replication to be able to develop novel approaches to target SARS-CoV-2 biology.


Assuntos
COVID-19/metabolismo , Citocinas/metabolismo , Interferon Tipo I/metabolismo , SARS-CoV-2 , Fator de Transcrição RelA/metabolismo , Transcriptoma , Replicação Viral , Células A549 , Animais , COVID-19/virologia , Chlorocebus aethiops , Epigenômica , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Interações entre Hospedeiro e Microrganismos , Humanos , Transdução de Sinais , Análise de Célula Única , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/genética , Fatores de Transcrição/metabolismo , Células Vero
11.
Hepatology ; 74(3): 1148-1163, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33713356

RESUMO

BACKGROUND AND AIMS: Equine hepacivirus (EqHV) is phylogenetically the closest relative of HCV and shares genome organization, hepatotropism, transient or persistent infection outcome, and the ability to cause hepatitis. Thus, EqHV studies are important to understand equine liver disease and further as an outbred surrogate animal model for HCV pathogenesis and protective immune responses. Here, we aimed to characterize the course of EqHV infection and associated protective immune responses. APPROACH AND RESULTS: Seven horses were experimentally inoculated with EqHV, monitored for 6 months, and rechallenged with the same and, subsequently, a heterologous EqHV. Clearance was the primary outcome (6 of 7) and was associated with subclinical hepatitis characterized by lymphocytic infiltrate and individual hepatocyte necrosis. Seroconversion was delayed and antibody titers waned slowly. Clearance of primary infection conferred nonsterilizing immunity, resulting in shortened duration of viremia after rechallenge. Peripheral blood mononuclear cell responses in horses were minimal, although EqHV-specific T cells were identified. Additionally, an interferon-stimulated gene signature was detected in the liver during EqHV infection, similar to acute HCV in humans. EqHV, as HCV, is stimulated by direct binding of the liver-specific microRNA (miR), miR-122. Interestingly, we found that EqHV infection sequesters enough miR-122 to functionally affect gene regulation in the liver. This RNA-based mechanism thus could have consequences for pathology. CONCLUSIONS: EqHV infection in horses typically has an acute resolving course, and the protective immune response lasts for at least a year and broadly attenuates subsequent infections. This could have important implications to achieve the primary goal of an HCV vaccine; to prevent chronicity while accepting acute resolving infection after virus exposure.


Assuntos
Regulação da Expressão Gênica , Hepacivirus/imunologia , Hepatite Viral Animal/imunologia , Fígado/imunologia , MicroRNAs/imunologia , Linfócitos T/imunologia , Animais , Progressão da Doença , Hepacivirus/metabolismo , Hepatite Viral Animal/genética , Cavalos , Fígado/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Transcriptoma
12.
BMC Biol ; 19(1): 13, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482825

RESUMO

BACKGROUND: Traditional laboratory model organisms represent a small fraction of the diversity of multicellular life, and findings in any given experimental model often do not translate to other species. Immunology research in non-traditional model organisms can be advantageous or even necessary, such as when studying host-pathogen interactions. However, such research presents multiple challenges, many stemming from an incomplete understanding of potentially species-specific immune cell types, frequencies, and phenotypes. Identifying and characterizing immune cells in such organisms is frequently limited by the availability of species-reactive immunophenotyping reagents for flow cytometry, and insufficient prior knowledge of cell type-defining markers. RESULTS: Here, we demonstrate the utility of single-cell RNA sequencing (scRNA-Seq) to characterize immune cells for which traditional experimental tools are limited. Specifically, we used scRNA-Seq to comprehensively define the cellular diversity of equine peripheral blood mononuclear cells (PBMC) from healthy horses across different breeds, ages, and sexes. We identified 30 cell type clusters partitioned into five major populations: monocytes/dendritic cells, B cells, CD3+PRF1+ lymphocytes, CD3+PRF1- lymphocytes, and basophils. Comparative analyses revealed many cell populations analogous to human PBMC, including transcriptionally heterogeneous monocytes and distinct dendritic cell subsets (cDC1, cDC2, plasmacytoid DC). Remarkably, we found that a majority of the equine peripheral B cell compartment is comprised of T-bet+ B cells, an immune cell subpopulation typically associated with chronic infection and inflammation in human and mouse. CONCLUSIONS: Taken together, our results demonstrate the potential of scRNA-Seq for cellular analyses in non-traditional model organisms and form the basis for an immune cell atlas of horse peripheral blood.


Assuntos
Cavalos/sangue , Leucócitos Mononucleares/classificação , Animais , Linfócitos B/classificação , Leucócitos Mononucleares/metabolismo , Análise de Sequência de RNA/veterinária , Análise de Célula Única/veterinária
13.
J Clin Immunol ; 41(7): 1457-1462, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34089457

RESUMO

While adults with Down syndrome (DS) are at increased risk of severe COVID-19 pneumonia, little is known about COVID-19 in children with DS. In children without DS, SARS-CoV-2 can rarely cause severe COVID-19 pneumonia, or an even rarer and more typically pediatric condition, multisystem inflammatory syndrome in children (MIS-C). Although the underlying mechanisms are still unknown, MIS-C is thought to be primarily immune-mediated. Here, we describe an atypical, severe form of MIS-C in two infant girls with DS who were hospitalized for over 4 months. Immunological evaluation revealed pronounced neutrophilia, B cell depletion, increased circulating IL-6 and IL-8, and elevated markers of immune activation ICAM1 and FcÉ£RI. Importantly, uninfected children with DS presented with similar but less stark immune features at steady state, possibly explaining risk of further uncontrolled inflammation following SARS-CoV-2 infection. Overall, a severe, atypical form of MIS-C may occur in children with DS.


Assuntos
COVID-19/diagnóstico , Síndrome de Down/diagnóstico , SARS-CoV-2/fisiologia , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico , COVID-19/complicações , Síndrome de Down/complicações , Evolução Fatal , Feminino , Hospitalização , Humanos , Lactente , Síndrome
14.
Mol Microbiol ; 111(1): 96-117, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30264928

RESUMO

Mobile genetic elements (MGEs) encode type IV secretion systems (T4SSs) known as conjugation machines for their transmission between bacterial cells. Conjugation machines are composed of an envelope-spanning translocation channel, and those functioning in Gram-negative species additionally elaborate an extracellular pilus to initiate donor-recipient cell contacts. We report that pKM101, a self-transmissible MGE functioning in the Enterobacteriaceae, has evolved a second target cell attachment mechanism. Two pKM101-encoded proteins, the pilus-tip adhesin TraC and a protein termed Pep, are exported to the cell surface where they interact and also form higher order complexes appearing as distinct foci or patches around the cell envelope. Surface-displayed TraC and Pep are required for an efficient conjugative transfer, 'extracellular complementation' potentially involving intercellular protein transfer, and activation of a Pseudomonas aeruginosa type VI secretion system. Both proteins are also required for bacteriophage PRD1 infection. TraC and Pep are exported across the outer membrane by a mechanism potentially involving the ß-barrel assembly machinery. The pKM101 T4SS, thus, deploys alternative routing pathways for the delivery of TraC to the pilus tip or both TraC and Pep to the cell surface. We propose that T4SS-encoded, pilus-independent attachment mechanisms maximize the probability of MGE propagation and might be widespread among this translocation superfamily.


Assuntos
Adesinas Bacterianas/metabolismo , Conjugação Genética , Escherichia coli/genética , Proteínas de Fímbrias/metabolismo , Transferência Genética Horizontal , Plasmídeos , Bacteriófago PRD1/fisiologia , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Multimerização Proteica , Transporte Proteico , Sistemas de Secreção Tipo IV/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Ligação Viral
15.
Mol Microbiol ; 105(2): 273-293, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28452085

RESUMO

Recent studies have shown that conjugation systems of Gram-negative bacteria are composed of distinct inner and outer membrane core complexes (IMCs and OMCCs, respectively). Here, we characterized the OMCC by focusing first on a cap domain that forms a channel across the outer membrane. Strikingly, the OMCC caps of the Escherichia coli pKM101 Tra and Agrobacterium tumefaciens VirB/VirD4 systems are completely dispensable for substrate transfer, but required for formation of conjugative pili. The pKM101 OMCC cap and extended pilus also are dispensable for activation of a Pseudomonas aeruginosa type VI secretion system (T6SS). Chimeric conjugation systems composed of the IMCpKM101 joined to OMCCs from the A. tumefaciens VirB/VirD4, E. coli R388 Trw, and Bordetella pertussis Ptl systems support conjugative DNA transfer in E. coli and trigger P. aeruginosa T6SS killing, but not pilus production. The A. tumefaciens VirB/VirD4 OMCC, solved by transmission electron microscopy, adopts a cage structure similar to the pKM101 OMCC. The findings establish that OMCCs are highly structurally and functionally conserved - but also intrinsically conformationally flexible - scaffolds for translocation channels. Furthermore, the OMCC cap and a pilus tip protein coregulate pilus extension but are not required for channel assembly or function.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Conjugação Genética/genética , Agrobacterium tumefaciens/genética , Proteínas da Membrana Bacteriana Externa/fisiologia , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Fímbrias Bacterianas/metabolismo , Ligação Proteica , Transporte Proteico/genética , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Fatores de Virulência/metabolismo
16.
J Exp Med ; 221(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38563820

RESUMO

Inborn errors of immunity lead to autoimmunity, inflammation, allergy, infection, and/or malignancy. Disease-causing JAK1 gain-of-function (GoF) mutations are considered exceedingly rare and have been identified in only four families. Here, we use forward and reverse genetics to identify 59 individuals harboring one of four heterozygous JAK1 variants. In vitro and ex vivo analysis of these variants revealed hyperactive baseline and cytokine-induced STAT phosphorylation and interferon-stimulated gene (ISG) levels compared with wild-type JAK1. A systematic review of electronic health records from the BioME Biobank revealed increased likelihood of clinical presentation with autoimmunity, atopy, colitis, and/or dermatitis in JAK1 variant-positive individuals. Finally, treatment of one affected patient with severe atopic dermatitis using the JAK1/JAK2-selective inhibitor, baricitinib, resulted in clinically significant improvement. These findings suggest that individually rare JAK1 GoF variants may underlie an emerging syndrome with more common presentations of autoimmune and inflammatory disease (JAACD syndrome). More broadly, individuals who present with such conditions may benefit from genetic testing for the presence of JAK1 GoF variants.


Assuntos
Colite , Dermatite , Hipersensibilidade , Humanos , Autoimunidade , Colite/genética , Inflamação , Janus Quinase 1/genética
17.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-34845443

RESUMO

Single cell RNA sequencing (scRNA-Seq) studies have provided critical insight into the pathogenesis of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), the causative agent of COronaVIrus Disease 2019 (COVID-19). scRNA-Seq workflows are generally designed for the detection and quantification of eukaryotic host mRNAs and not viral RNAs. Here, we compare different scRNA-Seq methods for their ability to quantify and detect SARS-CoV-2 RNAs with a focus on subgenomic mRNAs (sgmRNAs). We present a data processing strategy, single cell CoronaVirus sequencing (scCoVseq), which quantifies reads unambiguously assigned to sgmRNAs or genomic RNA (gRNA). Compared to standard 10X Genomics Chromium Next GEM Single Cell 3' (10X 3') and Chromium Next GEM Single Cell V(D)J (10X 5') sequencing, we find that 10X 5' with an extended read 1 (R1) sequencing strategy maximizes the detection of sgmRNAs by increasing the number of unambiguous reads spanning leader-sgmRNA junction sites. Using this method, we show that viral gene expression is highly correlated across cells suggesting a relatively consistent proportion of viral sgmRNA production throughout infection. Our method allows for quantification of coronavirus sgmRNA expression at single-cell resolution, and thereby supports high resolution studies of the dynamics of coronavirus RNA synthesis.

18.
Microbiol Spectr ; : e0077623, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37676044

RESUMO

Single-cell RNA sequencing (scRNA-Seq) studies have provided critical insight into the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19). scRNA-Seq library preparation methods and data processing workflows are generally designed for the detection and quantification of eukaryotic host mRNAs and not viral RNAs. Here, we compare different scRNA-Seq library preparation methods for their ability to quantify and detect SARS-CoV-2 RNAs with a focus on subgenomic mRNAs (sgmRNAs). We show that compared to 10X Genomics Chromium Next GEM Single Cell 3' (10X 3') libraries or 10X Genomics Chromium Next GEM Single Cell V(D)J (10X 5') libraries sequenced with standard read configurations, 10X 5' libraries sequenced with an extended length read 1 (R1) that covers both cell barcode and transcript sequence (termed "10X 5' with extended R1") increase the number of unambiguous reads spanning leader-sgmRNA junction sites. We further present a data processing workflow, single-cell coronavirus sequencing (scCoVseq), which quantifies reads unambiguously assigned to viral sgmRNAs or viral genomic RNA (gRNA). We find that combining 10X 5' with extended R1 library preparation/sequencing and scCoVseq data processing maximizes the number of viral UMIs per cell quantified by scRNA-Seq. Corresponding sgmRNA expression levels are highly correlated with expression in matched bulk RNA-Seq data sets quantified with established tools for SARS-CoV-2 analysis. Using this scRNA-Seq approach, we find that SARS-CoV-2 gene expression is highly correlated across individual infected cells, which suggests that the proportion of viral sgmRNAs remains generally consistent throughout infection. Taken together, these results and corresponding data processing workflow enable robust quantification of coronavirus sgmRNA expression at single-cell resolution, thereby supporting high-resolution studies of viral RNA processes in individual cells. IMPORTANCE Single-cell RNA sequencing (scRNA-Seq) has emerged as a valuable tool to study host-virus interactions, especially for coronavirus disease 2019 (COVID-19). Here we compare the performance of different scRNA-Seq library preparation methods and sequencing strategies to detect SARS-CoV-2 RNAs and develop a data processing workflow to quantify unambiguous sequence reads derived from SARS-CoV-2 genomic RNA and subgenomic mRNAs. After establishing a workflow that maximizes the detection of SARS-CoV-2 subgenomic mRNAs, we explore patterns of SARS-CoV-2 gene expression across cells with variable levels of total viral RNA, assess host gene expression differences between infected and bystander cells, and identify non-canonical and lowly abundant SARS-CoV-2 RNAs. The sequencing and data processing strategies developed here can enhance studies of coronavirus RNA biology at single-cell resolution and thereby contribute to our understanding of viral pathogenesis.

19.
bioRxiv ; 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36909601

RESUMO

The airway epithelium is composed of diverse cell types with specialized functions that mediate homeostasis and protect against respiratory pathogens. Human airway epithelial cultures at air-liquid interface (HAE) are a physiologically relevant in vitro model of this heterogeneous tissue, enabling numerous studies of airway disease 1â€"7 . HAE cultures are classically derived from primary epithelial cells, the relatively limited passage capacity of which can limit experimental methods and study designs. BCi-NS1.1, a previously described and widely used basal cell line engineered to express hTERT, exhibits extended passage lifespan while retaining capacity for differentiation to HAE 5 . However, gene expression and innate immune function in HAE derived from BCi-NS1.1 versus primary cells have not been fully characterized. Here, combining single cell RNA-Seq (scRNA-Seq), immunohistochemistry, and functional experimentation, we confirm at high resolution that BCi-NS1.1 and primary HAE cultures are largely similar in morphology, cell type composition, and overall transcriptional patterns. While we observed cell-type specific expression differences of several interferon stimulated genes in BCi-NS1.1 HAE cultures, we did not observe significant differences in susceptibility to infection with influenza A virus and Staphylococcus aureus . Taken together, our results further support BCi-NS1.1-derived HAE cultures as a valuable tool for the study of airway infectious disease.

20.
Nat Commun ; 12(1): 4208, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244516

RESUMO

The transcriptional regulators underlying induction and differentiation of dense connective tissues such as tendon and related fibrocartilaginous tissues (meniscus and annulus fibrosus) remain largely unknown. Using an iterative approach informed by developmental cues and single cell RNA sequencing (scRNA-seq), we establish directed differentiation models to generate tendon and fibrocartilage cells from mouse embryonic stem cells (mESCs) by activation of TGFß and hedgehog pathways, achieving 90% induction efficiency. Transcriptional signatures of the mESC-derived cells recapitulate embryonic tendon and fibrocartilage signatures from the mouse tail. scRNA-seq further identify retinoic acid signaling as a critical regulator of cell fate switch between TGFß-induced tendon and fibrocartilage lineages. Trajectory analysis by RNA sequencing define transcriptional modules underlying tendon and fibrocartilage fate induction and identify molecules associated with lineage-specific differentiation. Finally, we successfully generate 3-dimensional engineered tissues using these differentiation protocols and show activation of mechanotransduction markers with dynamic tensile loading. These findings provide a serum-free approach to generate tendon and fibrocartilage cells and tissues at high efficiency for modeling development and disease.


Assuntos
Fibrocartilagem/crescimento & desenvolvimento , Células-Tronco Embrionárias Murinas/fisiologia , Tendões/crescimento & desenvolvimento , Engenharia Tecidual/métodos , Ativação Transcricional , Animais , Diferenciação Celular/genética , Embrião de Mamíferos , Fibrocartilagem/citologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Mecanotransdução Celular/genética , Camundongos , RNA-Seq , Transdução de Sinais/genética , Análise de Célula Única , Tendões/citologia , Fator de Crescimento Transformador beta/metabolismo , Tretinoína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA