Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(12)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38138417

RESUMO

In the present study, a comprehensive parametric analysis was carried out using the electrical discharge machining of Ti6Al4V, using pulse-on time, current, and pulse-off time as input factors with output measures of surface roughness and material removal rate. The present study also used two different nanopowders, namely alumina and nano-graphene, to analyze their effect on output measures and surface defects. All the experimental runs were performed using Taguchi's array at three levels. Analysis of variance was employed to study the statistical significance. Empirical relations were generated through Minitab. The regression model term was observed to be significant for both the output responses, which suggested that the generated regressions were adequate. Among the input factors, pulse-off time and current were found to have a vital role in the change in material removal rate, while pulse-on time was observed as a vital input parameter. For surface quality, pulse-on time and pulse-off time were recognized to be influential parameters, while current was observed to be an insignificant factor. Teaching-learning-based optimization was used for the optimization of output responses. The influence of alumina and nano-graphene powder was investigated at optimal process parameters. The machining performance was significantly improved by using both powder-mixed electrical discharge machining as compared to the conventional method. Due to the higher conductivity of nano-graphene powder, it showed a larger improvement as compared to alumina powder. Lastly, scanning electron microscopy was operated to investigate the impact of alumina and graphene powder on surface morphology. The machined surface obtained for the conventional process depicted more surface defects than the powder-mixed process, which is key in aeronautical applications.

2.
Materials (Basel) ; 15(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35329469

RESUMO

Shape memory alloy (SMA), particularly those having a nickel-titanium combination, can memorize and regain original shape after heating. The superior properties of these alloys, such as better corrosion resistance, inherent shape memory effect, better wear resistance, and adequate superelasticity, as well as biocompatibility, make them a preferable alloy to be used in automotive, aerospace, actuators, robotics, medical, and many other engineering fields. Precise machining of such materials requires inputs of intellectual machining approaches, such as wire electrical discharge machining (WEDM). Machining capabilities of the process can further be enhanced by the addition of Al2O3 nanopowder in the dielectric fluid. Selected input machining process parameters include the following: pulse-on time (Ton), pulse-off time (Toff), and Al2O3 nanopowder concentration. Surface roughness (SR), material removal rate (MRR), and recast layer thickness (RLT) were identified as the response variables. In this study, Taguchi's three levels L9 approach was used to conduct experimental trials. The analysis of variance (ANOVA) technique was implemented to reaffirm the significance and adequacy of the regression model. Al2O3 nanopowder was found to have the highest contributing effect of 76.13% contribution, Ton was found to be the highest contributing factor for SR and RLT having 91.88% and 88.3% contribution, respectively. Single-objective optimization analysis generated the lowest MRR value of 0.3228 g/min (at Ton of 90 µs, Toff of 5 µs, and powder concentration of 2 g/L), the lowest SR value of 3.13 µm, and the lowest RLT value of 10.24 (both responses at Ton of 30 µs, Toff of 25 µs, and powder concentration of 2 g/L). A specific multi-objective Teaching-Learning-Based Optimization (TLBO) algorithm was implemented to generate optimal points which highlight the non-dominant feasible solutions. The least error between predicted and actual values suggests the effectiveness of both the regression model and the TLBO algorithms. Confirmatory trials have shown an extremely close relation which shows the suitability of both the regression model and the TLBO algorithm for the machining of the nanopowder-mixed WEDM process for Nitinol SMA. A considerable reduction in surface defects owing to the addition of Al2O3 powder was observed in surface morphology analysis.

3.
Materials (Basel) ; 15(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36295456

RESUMO

In the present study, the effect of alumina (Al2O3) nano-powder was investigated for the electrical discharge machining (EDM) of a Nitinol shape memory alloy (SMA). In addition to the nano-powder concentration, other parameters of pulse-on-time (Ton), pulse-off-time (Toff), and current were selected for the performance measures of the material removal rate (MRR), surface roughness (SR), and tool wear rate (TWR) of Nitinol SMA. The significance of the design variables on all the output measures was analyzed through an analysis of variance (ANOVA). The regression model term has significantly impacted the developed model terms for all the selected measures. In the case of individual variables, Al2O3 powder concentration (PC), Toff, and Ton had significantly impacted MRR, TWR, and SR measures, respectively. The influence of EDM variables were studied through main effect plots. The teaching-learning-based optimization (TLBO) technique was implemented to find an optimal parametric setting for attaining the desired levels of all the performance measures. Pursuant to this, the optimal parametric settings of current at 24 A, PC at 4 g/L, Toff at 10 µs, and Ton of 4 µs have shown optimal input parameters of 43.57 mg/min for MRR, 6.478 mg/min for TWR, and 3.73 µm for SR. These results from the TLBO technique were validated by performing the experiments at the optimal parametric settings of the EDM process. By considering the different user and application requirements, 40 Pareto points with unique solutions were generated. Lastly, scanning electron microscopy (SEM) performed the machined surface analysis. The authors consider this to be very beneficial in the nano-powder-mixed EDM process for appropriate manufacturing operations.

4.
Micromachines (Basel) ; 13(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35888844

RESUMO

Nitinol-shape memory alloys (SMAs) are widely preferred for applications of automobile, biomedical, aerospace, robotics, and other industrial area. Therefore, precise machining of Nitinol SMA plays a vital role in achieving better surface roughness, higher productivity and geometrical accuracy for the manufacturing of devices. Wire electric discharge machining (WEDM) has proven to be an appropriate technique for machining nitinol shape memory alloy (SMA). The present study investigated the influence of near-dry WEDM technique to reduce the environmental impact from wet WEDM. A parametric optimization was carried out with the consideration of design variables of current, pulse-on-time (Ton), and pulse-off-time (Toff) and their effect were studied on output characteristics of material removal rate (MRR), and surface roughness (SR) for near-dry WEDM of nitinol SMA. ANOVA was carried out for MRR, and SR using statistical analysis to investigate the impact of design variables on response measures. ANOVA results depicted the significance of the developed quadratic model for both MRR and SR. Current, and Ton were found to be major contributors on the response value of MRR, and SR, respectively. A teaching-learning-based optimization (TLBO) algorithm was employed to find the optimal combination of process parameters. Single-response optimization has yielded a maximum MRR of 1.114 mm3/s at Ton of 95 µs, Toff of 9 µs, current of 6 A. Least SR was obtained at Ton of 35 µs, Toff of 27 µs, current of 2 A with a predicted value of 2.81 µm. Near-dry WEDM process yielded an 8.94% reduction in MRR in comparison with wet-WEDM, while the performance of SR has been substantially improved by 41.56%. As per the obtained results from SEM micrographs, low viscosity, reduced thermal energy at IEG, and improved flushing of eroded material for air-mist mixture during NDWEDM has provided better surface morphology over the wet-WEDM process in terms of reduction in surface defects and better surface quality of nitinol SMA. Thus, for obtaining the better surface quality with reduced surface defects, near-dry WEDM process is largely suitable.

5.
Nanomaterials (Basel) ; 12(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36558247

RESUMO

Nickel-based superalloys find their main use in missile engines, atomic devices, investigational aircraft, aerospace engineering, industrial applications, and automotive gas turbines, spacecraft petrochemical tools, steam power, submarines, and broader heating applications. These superalloys impose certain difficulties during the process fabrication owing to their levels of higher hardness. In the current study, the precise machining of Waspaloy was attempted through the wire electrical discharge machining (WEDM) technique. A multi-objective optimization has been performed, and the influence of multi-walled carbon nanotubes (MWCNTs) has been assessed using the passing vehicle search (PVS) algorithm. The effects of machining variables like current, Toff, and Ton were studied using the output measures of material removal rate (MRR), recast layer thickness (RLT), and surface roughness (SR). The Box-Behnken design was applied to generate the experimental matrix. Empirical models were generated which show the interrelationship among the process variables and output measures. The analysis of variance (ANOVA) method was used to check the adequacy, and suitability of the models and to understand the significance of the parameters. The PVS technique was executed for the optimization of MRR, SR, and RLT. Pareto fronts were derived which gives a choice to the user to select any point on the front as per the requirement. To enhance the machining performance, MWCNTs mixed dielectric fluid was utilized, and the effect of these MWCNTs was also analyzed on the surface defects. The use of MWCNTs at 1 g/L enhanced the performance of MRR, SR, and RLT by 65.70%, 50.68%, and 40.96%, respectively. Also, the addition of MWCNTs has shown that the machined surface largely reduces the surface defects.

6.
Materials (Basel) ; 14(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34947337

RESUMO

Machining of Titanium alloys (Ti6Al4V) becomes more vital due to its essential role in biomedical, aerospace, and many other industries owing to the enhanced engineering properties. In the current study, a Box-Behnken design of the response surface methodology (RSM) was used to investigate the performance of the abrasive water jet machining (AWJM) of Ti6Al4V. For process parameter optimization, a systematic strategy combining RSM and a heat-transfer search (HTS) algorithm was investigated. The nozzle traverse speed (Tv), abrasive mass flow rate (Af), and stand-off distance (Sd) were selected as AWJM variables, whereas the material removal rate (MRR), surface roughness (SR), and kerf taper angle (θ) were considered as output responses. Statistical models were developed for the response, and Analysis of variance (ANOVA) was executed for determining the robustness of responses. The single objective optimization result yielded a maximum MRR of 0.2304 g/min (at Tv of 250 mm/min, Af of 500 g/min, and Sd of 1.5 mm), a minimum SR of 2.99 µm, and a minimum θ of 1.72 (both responses at Tv of 150 mm/min, Af of 500 g/min, and Sd of 1.5 mm). A multi-objective HTS algorithm was implemented, and Pareto optimal points were produced. 3D and 2D plots were plotted using Pareto optimal points, which highlighted the non-dominant feasible solutions. The effectiveness of the suggested model was proved in predicting and optimizing the AWJM variables. The surface morphology of the machined surfaces was investigated using the scanning electron microscope. The confirmation test was performed using optimized cutting parameters to validate the results.

7.
Materials (Basel) ; 14(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068107

RESUMO

In the current scenario of manufacturing competitiveness, it is a requirement that new technologies are implemented in order to overcome the challenges of achieving component accuracy, high quality, acceptable surface finish, an increase in the production rate, and enhanced product life with a reduced environmental impact. Along with these conventional challenges, the machining of newly developed smart materials, such as shape memory alloys, also require inputs of intelligent machining strategies. Wire electrical discharge machining (WEDM) is one of the non-traditional machining methods which is independent of the mechanical properties of the work sample and is best suited for machining nitinol shape memory alloys. Nano powder-mixed dielectric fluid for the WEDM process is one of the ways of improving the process capabilities. In the current study, Taguchi's L16 orthogonal array was implemented to perform the experiments. Current, pulse-on time, pulse-off time, and nano-graphene powder concentration were selected as input process parameters, with material removal rate (MRR) and surface roughness (SR) as output machining characteristics for investigations. The heat transfer search (HTS) algorithm was implemented for obtaining optimal combinations of input parameters for MRR and SR. Single objective optimization showed a maximum MRR of 1.55 mm3/s, and minimum SR of 2.68 µm. The Pareto curve was generated which gives the optimal non-dominant solutions.

8.
J Pediatr Surg ; 54(8): 1664-1667, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30274709

RESUMO

BACKGROUND: Umbilical hernia repairs are one of the most commonly performed operations in children. The traditional repair involves an infraumbilical incision, which produces a visible scar. We report a novel technique of umbilical hernia repair through a transumbilical incision, which eliminates the scar by hiding it within the umbilicus. METHODS: We performed a retrospective chart review of 134 patients who had undergone a transumbilical hernia repair at a single institution between 2008 and 2016. Satisfaction with cosmesis and the presence of complications were assessed through parental interviews during follow up visit or by telephone survey. These data were compared to a large volume retrospective analysis of the standard infraumbilical approach. RESULTS: 121 of the 134 patients were evaluated in the clinic or by telephone interview. The overall complication rate was 7.44%. Parents of 118 patients reported satisfaction with the cosmetic result (97.52%). In comparison to the largest study of pediatric infraumbilical repair, there was an improvement in subjective cosmesis without a significant increase in complications. CONCLUSION: Transumbilical hernia repair is a safe and cosmetically appealing technique for umbilical hernia repair in children. LEVEL OF EVIDENCE: Treatment study, level III.


Assuntos
Cicatriz/prevenção & controle , Hérnia Umbilical/cirurgia , Herniorrafia/métodos , Umbigo/cirurgia , Adolescente , Criança , Pré-Escolar , Cicatriz/etiologia , Feminino , Herniorrafia/efeitos adversos , Humanos , Lactente , Masculino , Pais , Satisfação do Paciente , Recidiva , Estudos Retrospectivos , Ferida Cirúrgica/complicações
9.
Materials (Basel) ; 12(8)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003478

RESUMO

Nitinol, a shape-memory alloy (SMA), is gaining popularity for use in various applications. Machining of these SMAs poses a challenge during conventional machining. Henceforth, in the current study, the wire-electric discharge process has been attempted to machine nickel-titanium (Ni55.8Ti) super-elastic SMA. Furthermore, to render the process viable for industry, a systematic approach comprising response surface methodology (RSM) and a heat-transfer search (HTS) algorithm has been strategized for optimization of process parameters. Pulse-on time, pulse-off time and current were considered as input process parameters, whereas material removal rate (MRR), surface roughness, and micro-hardness were considered as output responses. Residual plots were generated to check the robustness of analysis of variance (ANOVA) results and generated mathematical models. A multi-objective HTS algorithm was executed for generating 2-D and 3-D Pareto optimal points indicating the non-dominant feasible solutions. The proposed combined approach proved to be highly effective in predicting and optimizing the wire electrical discharge machining (WEDM) process parameters. Validation trials were carried out and the error between measured and predicted values was negligible. To ensure the existence of a shape-memory effect even after machining, a differential scanning calorimetry (DSC) test was carried out. The optimized parameters were found to machine the alloy appropriately with the intact shape memory effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA