Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778747

RESUMO

This paper updates and builds on a previous White Paper in this journal that some of us contributed to concerning the molecular and cellular basis of cardiac neurobiology of heart disease. Here we focus on recent findings that underpin cardiac autonomic development, novel intracellular pathways and neuroplasticity. Throughout we highlight unanswered questions and areas of controversy. Whilst some neurochemical pathways are already demonstrating prognostic viability in patients with heart failure, we also discuss the opportunity to better understand sympathetic impairment by using patient specific stem cells that provides pathophysiological contextualization to study 'disease in a dish'. Novel imaging techniques and spatial transcriptomics are also facilitating a road map for target discovery of molecular pathways that may form a therapeutic opportunity to treat cardiac dysautonomia.

2.
Small ; 20(8): e2304693, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37822153

RESUMO

Tumor penetration of nanoparticles is crucial in nanomedicine, but the mechanisms of tumor penetration are poorly understood. This work presents a multidimensional, quantitative approach to investigate the tissue penetration behavior of nanoparticles, with focuses on the particle size effect on penetration pathways, in an MDA-MB-231 tumor spheroid model using a combination of spectrometry, microscopy, and synchrotron beamline techniques. Quasi-spherical gold nanoparticles of different sizes are synthesized and incubated with 2D and 3D MDA-MB-231 cells and spheroids with or without an energy-dependent cell uptake inhibitor. The distribution and penetration pathways of nanoparticles in spheroids are visualized and quantified by inductively coupled plasma mass spectrometry, two-photon microscopy, and synchrotron X-ray fluorescence microscopy. The results reveal that 15 nm nanoparticles penetrate spheroids mainly through an energy-independent transcellular pathway, while 60 nm nanoparticles penetrate primarily through an energy-dependent transcellular pathway. Meanwhile, 22 nm nanoparticles penetrate through both transcellular and paracellular pathways and they demonstrate the greatest penetration ability in comparison to other two sizes. The multidimensional analytical methodology developed through this work offers a generalizable approach to quantitatively study the tissue penetration of nanoparticles, and the results provide important insights into the designs of nanoparticles with high accumulation at a target site.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Humanos , Ouro/química , Esferoides Celulares , Nanopartículas/química , Microscopia
3.
J Exp Bot ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761108

RESUMO

Self-sustaining vegetation in metal-contaminated areas is essential for rebuilding the ecological resilience and community stability in degraded lands. Metal-tolerant plants originating from contaminated post-mining areas may hold the key to successful plant establishment and growth. Yet, little is known about the impact of metal toxicity on reproductive strategies, metal accumulation and allocation patterns at the seed stage. Our research focused on metal tolerant Atriplex lentiformis, examining the effects of toxic metal(loid) concentration in soils on variability in its reproductive strategies, including germination patterns, elemental uptake, and allocation within the seeds. We employed advanced imaging techniques like synchrotron X-ray Fluorescence Microscopy (XFM; 2D scans and 3D tomograms) combined with ICP-MS to reveal significant differences in metal(loid) concentration and distribution within the seed structures of A. lentiformis from contrasting habitats. Exclusive Zn hotspots of high concentrations were found in the seeds of the metallicolous accession, primarily in the sensitive tissues of shoot apical meristems and root zones of the seed embryos. The findings of this study offer novel insights into phenotypic variability, metal tolerance and accumulation in plants from extreme environments. This knowledge can be applied to enhance plant survival and performance in land restoration efforts.

4.
Clin Sci (Lond) ; 138(5): 309-326, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38391050

RESUMO

Senescence of kidney tubules leads to tubulointerstitial fibrosis (TIF). Proximal tubular epithelial cells undergo stress-induced senescence during diabetes and episodes of acute kidney injury (AKI), and combining these injuries promotes the progression of diabetic kidney disease (DKD). Since TIF is crucial to progression of DKD, we examined the therapeutic potential of targeting senescence with a senolytic drug (HSP90 inhibitor) and/or a senostatic drug (ASK1 inhibitor) in a model of TIF in which AKI is superimposed on diabetes. After 8 weeks of streptozotocin-induced diabetes, mice underwent bilateral clamping of renal pedicles to induce mild AKI, followed by 28 days of reperfusion. Groups of mice (n=10-12) received either vehicle, HSP90 inhibitor (alvespimycin), ASK1 inhibitor (GS-444217), or both treatments. Vehicle-treated mice displayed tubular injury at day 3 and extensive tubular cell senescence at day 10, which remained unresolved at day 28. Markers of senescence (Cdkn1a and Cdkn2a), inflammation (Cd68, Tnf, and Ccl2), and TIF (Col1a1, Col4a3, α-Sma/Acta2, and Tgfb1) were elevated at day 28, coinciding with renal function impairment. Treatment with alvespimycin alone reduced kidney senescence and levels of Col1a1, Acta2, Tgfb1, and Cd68; however, further treatment with GS-444217 also reduced Col4a3, Tnf, Ccl2, and renal function impairment. Senolytic therapy can inhibit TIF during DKD, but its effectiveness can be improved by follow-up treatment with a senostatic inhibitor, which has important implications for treating progressive DKD.


Assuntos
Injúria Renal Aguda , Benzoquinonas , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Imidazóis , Lactamas Macrocíclicas , Piridinas , Camundongos , Animais , Senoterapia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Rim/patologia , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/patologia , Fibrose , Senescência Celular
5.
Environ Sci Technol ; 58(5): 2373-2383, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38271998

RESUMO

Most nonoccupational human exposure to thallium (Tl) occurs via consumption of contaminated food crops. Brassica cultivars are common crops that can accumulate more than 500 µg Tl g-1. Knowledge of Tl uptake and translocation mechanisms in Brassica cultivars is fundamental to developing methods to inhibit Tl uptake or conversely for potential use in phytoremediation of polluted soils. Brassica cultivars (25 in total) were subjected to Tl dosing to screen for Tl accumulation. Seven high Tl-accumulating varieties were selected for follow-up Tl dosing experiments. The highest Tl accumulating Brassica cultivars were analyzed by synchrotron-based micro-X-ray fluorescence to investigate the Tl distribution and synchrotron-based X-ray absorption near-edge structure spectroscopy (XANES) to unravel Tl chemical speciation. The cultivars exhibited different Tl tolerance and accumulation patterns with some reaching up to 8300 µg Tl g-1. The translocation factors for all the cultivars were >1 with Brassica oleracea var. acephala (kale) having the highest translocation factor of 167. In this cultivar, Tl is preferentially localized in the venules toward the apex and along the foliar margins and in minute hot spots in the leaf blade. This study revealed through scanning electron microscopy and X-ray fluorescence analysis that highly Tl-enriched crystals occur in the stoma openings of the leaves. The finding is further validated by XANES spectra that show that Tl(I) dominates in the aqueous as well as in the solid form. The high accumulation of Tl in these Brassica crops has important implications for food safety and results of this study help to understand the mechanisms of Tl uptake and translocation in these crops.


Assuntos
Brassica , Poluentes do Solo , Humanos , Brassica/química , Tálio/análise , Verduras , Raios X , Fluorescência , Biodegradação Ambiental , Produtos Agrícolas
6.
Kidney Int ; 103(5): 886-902, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36804379

RESUMO

Progressive fibrosis is a hallmark of chronic kidney disease, but we lack effective treatments to halt this destructive process. Micropeptides (peptides of no more than 100 amino acids) encoded by small open reading frames represent a new class of eukaryotic regulators. Here, we describe that the micropeptide regulator of ß-oxidation (MOXI) regulates kidney fibrosis. MOXI expression was found to be up-regulated in human fibrotic kidney disease, and this correlated with the degree of fibrosis and loss of kidney function. MOXI was expressed in the cytoplasm and mitochondria of cultured tubular epithelial cells and translocated to the nucleus upon Transforming Growth Factor-ß1 stimulation. Deletion of Moxi protected mice against fibrosis and inflammation in the folic acid and unilateral ureteral obstruction models. As a potential molecular therapy, treatment with an antisense MOXI oligonucleotide effectively knocked-down MOXI expression and protected against kidney fibrosis in both models. Bimolecular fluorescence complementation identified the enzyme N-acetyltransferase 14 (Nat14) and transcription factor c-Jun as MOXI binding partners. The MOXI/Nat14/c-Jun complex enhances basal and Transforming Growth Factor-ß1 induced collagen I gene promoter activity. Phosphorylation at T49 is required for MOXI nuclear localization and for complex formation with Nat14 and c-Jun. Furthermore, mice with a MoxiT49A point mutation were protected in the models of kidney fibrosis. Thus, our studies demonstrate a key role for the micropeptide MOXI in kidney fibrosis and identify a new function of MOXI in forming a transcriptional complex with Nat14 and c-Jun.


Assuntos
Nefropatias , Obstrução Ureteral , Animais , Humanos , Camundongos , Acetiltransferases/genética , Acetiltransferases/metabolismo , Fibrose , Rim/patologia , Nefropatias/patologia , Mitocôndrias/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Micropeptídeos
7.
Am J Pathol ; 192(5): 738-749, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35181335

RESUMO

Kidney organoids derived from pluripotent stem cells and epithelial organoids derived from adult tissue (tubuloids) have been used to study various kidney disorders with a strong genetic component, such as polycystic kidney disease, Wilms tumor, and congenital nephrotic syndrome. However, complex disorders without clear genetic associations, such as acute kidney injury and many forms of chronic kidney disease, are only just beginning to be investigated using these in vitro approaches. Although organoids are a reductionist model, they contain clinically relevant cell populations that may help to elucidate human-specific pathogenic mechanisms. Thus, organoids may complement animal disease models to accelerate the translation of laboratory proof-of-concept research into clinical practice. This review discusses whether kidney organoids and tubuloids are suitable models for the study of complex human kidney disease and highlights their advantages and limitations compared with monolayer cell culture and animal models.


Assuntos
Injúria Renal Aguda , Células-Tronco Pluripotentes , Insuficiência Renal Crônica , Animais , Diferenciação Celular , Feminino , Humanos , Rim , Masculino , Organoides
8.
Am J Pathol ; 192(3): 441-453, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34954209

RESUMO

Patients with diabetes are at an increased risk for acute kidney injury (AKI) after renal ischemia/reperfusion injury (IRI). However, there is a lack preclinical models of IRI in established diabetes. The current study characterized renal IRI in mice with established diabetes and investigated potential therapies. Diabetes was induced in C57BL/6J mice by low-dose streptozotocin injection. After 7 weeks of sustained diabetes, mice underwent 13 minutes of bilateral renal ischemia and were euthanized after 24 hours of reperfusion. Age-matched, nondiabetic controls underwent the same surgical procedure. Renal IRI induced two- and sevenfold increases in plasma creatinine level in nondiabetic and diabetic mice, respectively (P < 0.001). Kidney damage, as indicated by histologic damage, tubular cell death, tubular damage markers, and inflammation, was more severe in the diabetic IRI group. The diabetic IRI group showed greater accumulation of spleen tyrosine kinase (Syk)-expressing cells, and increased c-Jun N-terminal kinase (Jnk) signaling in tubules compared to nondiabetic IRI. Prophylactic treatment with a Jnk or Syk inhibitor substantially reduced the severity of AKI in the diabetic IRI model, with differential effects on neutrophil infiltration and Jnk activation. In conclusion, established diabetes predisposed mice to renal IRI-induced AKI. Two distinct proinflammatory pathways, JNK and SYK, were identified as potential therapeutic targets for anticipated AKI in patients with diabetes.


Assuntos
Injúria Renal Aguda , Diabetes Mellitus Experimental , Traumatismo por Reperfusão , Injúria Renal Aguda/etiologia , Animais , Diabetes Mellitus Experimental/metabolismo , Feminino , Humanos , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/patologia , Transdução de Sinais/fisiologia , Quinase Syk/metabolismo
9.
J Exp Bot ; 74(15): 4707-4720, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37201950

RESUMO

Pathogen attacks elicit dynamic and widespread molecular responses in plants. While our understanding of plant responses has advanced considerably, little is known of the molecular responses in the asymptomatic 'green' regions adjoining lesions. Here, we explore gene expression data and high-resolution elemental imaging to report the spatiotemporal changes in the asymptomatic green region of susceptible and moderately resistant wheat cultivars infected with a necrotrophic fungal pathogen, Pyrenophora tritici-repentis. We show, with improved spatiotemporal resolution, that calcium oscillations are modified in the susceptible cultivar, resulting in 'frozen' host defence signals at the mature disease stage, and silencing of the host's recognition and defence mechanisms that would otherwise protect it from further attacks. In contrast, calcium accumulation and a heightened defence response were observed in the moderately resistant cultivar in the later stage of disease development. Furthermore, in the susceptible interaction, the asymptomatic green region was unable to recover after disease disruption. Our targeted sampling technique also enabled detection of eight previously predicted proteinaceous effectors in addition to the known ToxA effector. Collectively, our results highlight the benefits of spatially resolved molecular analysis and nutrient mapping to provide high-resolution spatiotemporal snapshots of host-pathogen interactions, paving the way for disentangling complex disease interactions in plants.


Assuntos
Transcriptoma , Triticum , Triticum/genética , Triticum/microbiologia , Raios X , Suscetibilidade a Doenças , Microscopia de Fluorescência , Doenças das Plantas/microbiologia
10.
Brain ; 145(9): 3108-3130, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35512359

RESUMO

Aberrant self-assembly and toxicity of wild-type and mutant superoxide dismutase 1 (SOD1) has been widely examined in silico, in vitro and in transgenic animal models of amyotrophic lateral sclerosis. Detailed examination of the protein in disease-affected tissues from amyotrophic lateral sclerosis patients, however, remains scarce. We used histological, biochemical and analytical techniques to profile alterations to SOD1 protein deposition, subcellular localization, maturation and post-translational modification in post-mortem spinal cord tissues from amyotrophic lateral sclerosis cases and controls. Tissues were dissected into ventral and dorsal spinal cord grey matter to assess the specificity of alterations within regions of motor neuron degeneration. We provide evidence of the mislocalization and accumulation of structurally disordered, immature SOD1 protein conformers in spinal cord motor neurons of SOD1-linked and non-SOD1-linked familial amyotrophic lateral sclerosis cases, and sporadic amyotrophic lateral sclerosis cases, compared with control motor neurons. These changes were collectively associated with instability and mismetallation of enzymatically active SOD1 dimers, as well as alterations to SOD1 post-translational modifications and molecular chaperones governing SOD1 maturation. Atypical changes to SOD1 protein were largely restricted to regions of neurodegeneration in amyotrophic lateral sclerosis cases, and clearly differentiated all forms of amyotrophic lateral sclerosis from controls. Substantial heterogeneity in the presence of these changes was also observed between amyotrophic lateral sclerosis cases. Our data demonstrate that varying forms of SOD1 proteinopathy are a common feature of all forms of amyotrophic lateral sclerosis, and support the presence of one or more convergent biochemical pathways leading to SOD1 proteinopathy in amyotrophic lateral sclerosis. Most of these alterations are specific to regions of neurodegeneration, and may therefore constitute valid targets for therapeutic development.


Assuntos
Esclerose Lateral Amiotrófica , Processamento de Proteína Pós-Traducional , Superóxido Dismutase-1 , Esclerose Lateral Amiotrófica/genética , Humanos , Mutação , Medula Espinal/patologia , Superóxido Dismutase-1/genética
11.
Pediatr Nephrol ; 38(6): 1831-1842, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36357635

RESUMO

BACKGROUND: The immunosuppressant mizoribine (Miz) can reduce progression of childhood IgA nephropathy (IgAN). This study examined whether Miz affects CD163+ M2-type macrophages which are associated with kidney fibrosis in childhood IgAN. METHODS: A retrospective cohort of 90 children with IgAN were divided into groups treated with prednisolone (PSL) alone (P group; n = 42) or PSL plus Miz (PM group; n = 48) for a 2-year period. Normal human monocyte-derived macrophages were stimulated with dexamethasone (Dex), or Dex plus Miz, and analyzed by DNA microarray. RESULTS: Clinical and histological findings at first biopsy were equivalent between patients entering the P and PM groups. Both treatments improved proteinuria and haematuria, and maintained normal kidney function over the 2-year course. The P group exhibited increased mesangial matrix expansion, increased glomerular segmental or global sclerosis, and increased interstitial fibrosis at 2-year biopsy; however, the PM group showed no progression of kidney fibrosis. These protective effects were associated with reduced numbers of glomerular and interstitial CD163+ macrophages in the PM versus P group. In cultured human macrophages, Dex induced upregulation of cytokines and growth factors, which was prevented by Miz. Miz also inhibited Dex-induced expression of CD300E, an activating receptor which can prevent monocyte apoptosis. CD300e expression by CD163+ macrophages was evident in the P group, which was reduced by Miz treatment. CONCLUSION: Miz halted the progression of kidney fibrosis in PSL-treated pediatric IgAN. This was associated with reduced CD163+ and CD163+CD300e+ macrophage populations, plus in vitro findings that Miz can suppress steroid-induced macrophage expression of pro-fibrotic molecules. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Glomerulonefrite por IGA , Humanos , Criança , Glomerulonefrite por IGA/tratamento farmacológico , Glomerulonefrite por IGA/patologia , Imunoglobulina A , Estudos Retrospectivos , Glomérulos Renais/patologia , Macrófagos/metabolismo , Prednisolona/farmacologia , Prednisolona/uso terapêutico , Fibrose
12.
Proc Natl Acad Sci U S A ; 117(34): 20741-20752, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32788346

RESUMO

Unresolved inflammation can lead to tissue fibrosis and impaired organ function. Macrophage-myofibroblast transition (MMT) is one newly identified mechanism by which ongoing chronic inflammation causes progressive fibrosis in different forms of kidney disease. However, the mechanisms underlying MMT are still largely unknown. Here, we discovered a brain-specific homeobox/POU domain protein Pou4f1 (Brn3a) as a specific regulator of MMT. Interestingly, we found that Pou4f1 is highly expressed by macrophages undergoing MMT in sites of fibrosis in human and experimental kidney disease, identified by coexpression of the myofibroblast marker, α-SMA. Unexpectedly, Pou4f1 expression peaked in the early stage in renal fibrogenesis in vivo and during MMT of bone marrow-derived macrophages (BMDMs) in vitro. Mechanistically, chromatin immunoprecipitation (ChIP) assay identified that Pou4f1 is a Smad3 target and the key downstream regulator of MMT, while microarray analysis defined a Pou4f1-dependent fibrogenic gene network for promoting TGF-ß1/Smad3-driven MMT in BMDMs at the transcriptional level. More importantly, using two mouse models of progressive renal interstitial fibrosis featuring the MMT process, we demonstrated that adoptive transfer of TGF-ß1-stimulated BMDMs restored both MMT and renal fibrosis in macrophage-depleted mice, which was prevented by silencing Pou4f1 in transferred BMDMs. These findings establish a role for Pou4f1 in MMT and renal fibrosis and suggest that Pou4f1 may be a therapeutic target for chronic kidney disease with progressive renal fibrosis.


Assuntos
Proteína Smad3/metabolismo , Fator de Transcrição Brn-3A/genética , Fator de Crescimento Transformador beta1/metabolismo , Animais , Feminino , Fibrose/fisiopatologia , Redes Reguladoras de Genes , Humanos , Inflamação/patologia , Rim/patologia , Nefropatias/genética , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/metabolismo , Transdução de Sinais/genética , Fator de Transcrição Brn-3A/metabolismo , Fator de Transcrição Brn-3A/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Sistema Urinário/metabolismo
13.
Anal Chem ; 94(11): 4584-4593, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35276040

RESUMO

Synchrotron-based X-ray fluorescence microscopy (XFM) analysis is a powerful technique that can be used to visualize elemental distributions across a broad range of sample types. Compared to conventional mapping techniques such as laser ablation inductively coupled plasma mass spectrometry or benchtop XFM, synchrotron-based XFM provides faster and more sensitive analyses. However, access to synchrotron XFM beamlines is highly competitive, and as a result, these beamlines are often oversubscribed. Therefore, XFM experiments that require many large samples to be scanned can penalize beamline throughput. Our study was largely driven by the need to scan large gels (170 cm2) using XFM without decreasing beamline throughput. We describe a novel approach for acquiring two sets of XFM data using two fluorescence detectors in tandem; essentially performing two separate experiments simultaneously. We measured the effects of tandem scanning on beam quality by analyzing a range of contrasting samples downstream while simultaneously scanning different gel materials upstream. The upstream gels were thin (<200 µm) diffusive gradients in thin-film (DGT) binding gels. DGTs are passive samplers that are deployed in water, soil, and sediment to measure the concentration and distribution of potentially bioavailable nutrients and contaminants. When deployed on soil, DGTs are typically small (2.5 cm2), so we developed large DGTs (170 cm2), which can be used to provide extensive maps to visualize the diffusion of fertilizers in soil. Of the DGT gel materials tested (bis-acrylamide, polyacrylamide, and polyurethane), polyurethane gels were most suitable for XFM analysis, having favorable handling, drying, and analytical properties. This gel type enabled quantitative (>99%) transmittance with minimal (<3%) flux variation during raster scanning, whereas the other gels had a substantial effect on the beam focus. For the first time, we have (1) used XFM for mapping analytes in large DGTs and (2) developed a tandem probe analysis mode for synchrotron-based XFM, effectively doubling throughput. The novel tandem probe analysis mode described here is of broad applicability across many XFM beamlines as it could be used for future experiments where any uniform, highly transmissive sample could be analyzed upstream in the "background" of downstream samples.


Assuntos
Poliuretanos , Síncrotrons , Difusão , Géis , Solo/química
14.
Am J Pathol ; 191(5): 817-828, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33607044

RESUMO

Activation of the JUN amino-terminal kinase (JNK) pathway is prominent in most forms of acute and progressive tubulointerstitial damage, including acute renal ischemia/reperfusion injury (IRI). Two forms of JNK, JNK1 and JNK2, are expressed in the kidney. Systemic administration of pan-JNK inhibitors suppresses renal IRI; however, the contribution of JNK1 versus JNK2, and the specific role of JNK activation in the proximal tubule in IRI, remains unknown. These questions were addressed in rat and mouse models of acute bilateral renal IRI. Administration of the JNK inhibitor, CC-930, substantially reduced the severity of renal failure, tubular damage, and inflammation at 24 hours in a rat IRI model. Additionally, Jnk1-/- mice, but not Jnk2-/- mice, were shown to be significantly protected against acute renal failure, tubular damage, and inflammation in the IRI model. Furthermore, mice with conditional Jnk1 deletion in the proximal tubule also showed considerable protection from IRI-induced renal failure, tubular damage, and inflammation. Finally, primary cultures of Jnk1-/-, but not Jnk2-/-, tubular epithelial cells were protected from oxidant-induced cell death, in association with preventing phosphorylation of proteins (receptor interacting serine/threonine kinase 3 and mixed lineage kinase domain-like pseudokinase) in the necroptosis pathway. In conclusion, JNK1, but not JNK2, plays a specific role in IRI-induced cell death in the proximal tubule, leading to acute renal failure.


Assuntos
Injúria Renal Aguda/patologia , Inflamação/patologia , Sistema de Sinalização das MAP Quinases , Traumatismo por Reperfusão/patologia , Animais , Morte Celular , Modelos Animais de Doenças , Células Epiteliais/patologia , Rim/patologia , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Ratos , Ratos Sprague-Dawley
15.
EMBO Rep ; 21(2): e48781, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31916354

RESUMO

Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease. TGF-ß1/Smad3 signalling plays a major pathological role in DN; however, the contribution of Smad4 has not been examined. Smad4 depletion in the kidney using anti-Smad4 locked nucleic acid halted progressive podocyte damage and glomerulosclerosis in mouse type 2 DN, suggesting a pathogenic role of Smad4 in podocytes. Smad4 is upregulated in human and mouse podocytes during DN. Conditional Smad4 deletion in podocytes protects mice from type 2 DN, independent of obesity. Mechanistically, hyperglycaemia induces Smad4 localization to mitochondria in podocytes, resulting in reduced glycolysis and oxidative phosphorylation and increased production of reactive oxygen species. This operates, in part, via direct binding of Smad4 to the glycolytic enzyme PKM2 and reducing the active tetrameric form of PKM2. In addition, Smad4 interacts with ATPIF1, causing a reduction in ATPIF1 degradation. In conclusion, we have discovered a mitochondrial mechanism by which Smad4 causes diabetic podocyte injury.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Podócitos , Animais , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Glicólise/genética , Rim , Camundongos , Podócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
16.
Physiol Plant ; 174(1): e13612, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34970752

RESUMO

Zinc (Zn) is an important micronutrient in the human body, and health complications associated with insufficient dietary intake of Zn can be overcome by increasing the bioavailable concentrations in edible parts of crops (biofortification). Wheat (Triticum aestivum L) is the most consumed cereal crop in the world; therefore, it is an excellent target for Zn biofortification programs. Knowledge of the physiological and molecular processes that regulate Zn concentration in the wheat grain is restricted, inhibiting the success of genetic Zn biofortification programs. This review helps break this nexus by advancing understanding of those processes, including speciation regulated uptake, root to shoot transport, remobilisation, grain loading and distribution of Zn in wheat grain. Furthermore, new insights to genetic Zn biofortification of wheat are discussed, and where data are limited, we draw upon information for other cereals and Fe distribution. We identify the loading and distribution of Zn in grain as major bottlenecks for biofortification, recognising anatomical barriers in the vascular region at the base of the grain, and physiological and molecular restrictions localised in the crease region as major limitations. Movement of Zn from the endosperm cavity into the modified aleurone, aleurone and then to the endosperm is mainly regulated by ZIP and YSL transporters. Zn complexation with phytic acid in the aleurone limits Zn mobility into the endosperm. These insights, together with synchrotron-X-ray-fluorescence microscopy, support the hypothesis that a focus on the mechanisms of Zn loading into the grain will provide new opportunities for Zn biofortification of wheat.


Assuntos
Biofortificação , Triticum , Grão Comestível , Endosperma , Triticum/genética , Zinco
17.
Environ Sci Technol ; 56(16): 11857-11864, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35876701

RESUMO

Characterizing the chemical state and physical disposition of uranium that has persisted over geologic time scales is key for modeling the long-term geologic sequestration of nuclear waste, accurate uranium-lead dating, and the use of uranium isotopes as paleo redox proxies. X-ray absorption spectroscopy coupled with molecular dynamics modeling demonstrated that pentavalent uranium is incorporated in the structure of 1.6 billion year old hematite (α-Fe2O3), attesting to the robustness of Fe oxides as waste forms and revealing the reason for the great success in using hematite for petrogenic dating. The extreme antiquity of this specimen suggests that the pentavalent state of uranium, considered a transient, is stable when incorporated into hematite, a ubiquitous phase that spans the crustal continuum. Thus, it would appear overly simplistic to assume that only the tetravalent and hexavalent states are relevant when interpreting the uranium isotopic record from ancient crust and contained ore systems.


Assuntos
Urânio , Compostos Férricos/química , Oxirredução , Urânio/química , Espectroscopia por Absorção de Raios X
18.
J Immunol ; 205(1): 202-212, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32482710

RESUMO

IgA nephropathy (IgAN), the most common primary glomerular disorder, has a relatively poor prognosis yet lacks a pathogenesis-based treatment. Compound K (CK) is a major absorbable intestinal bacterial metabolite of ginsenosides, which are bioactive components of ginseng. The present study revealed promising therapeutic effects of CK in two complementary IgAN models: a passively induced one developed by repeated injections of IgA immune complexes and a spontaneously occurring model of spontaneous grouped ddY mice. The potential mechanism for CK includes 1) inhibiting the activation of NLRP3 inflammasome in renal tissues, macrophages and bone marrow-derived dendritic cells, 2) enhancing the induction of autophagy through increased SIRT1 expression, and 3) eliciting autophagy-mediated NLRP3 inflammasome inhibition. The results support CK as a drug candidate for IgAN.


Assuntos
Autofagia/efeitos dos fármacos , Ginsenosídeos/farmacologia , Glomerulonefrite por IGA/tratamento farmacológico , Inflamassomos/antagonistas & inibidores , Sirtuína 1/metabolismo , Animais , Autofagia/imunologia , Linhagem Celular , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Ginsenosídeos/uso terapêutico , Glomerulonefrite por IGA/imunologia , Glomerulonefrite por IGA/patologia , Humanos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/imunologia , Glomérulos Renais/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Cultura Primária de Células , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
19.
Semin Cell Dev Biol ; 94: 20-27, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30658154

RESUMO

In sympathetic neurons innervating the heart, action potentials activate voltage-gated Ca2+ channels and evoke Ca2+ entry into presynaptic terminals triggering neurotransmitter release. Binding of transmitters to specific receptors stimulates signal transduction pathways that cause changes in cardiac function. The mechanisms contributing to presynaptic Ca2+ dynamics involve regulation of endogenous Ca2+ buffers, in particular the endoplasmic reticulum, mitochondria and cyclic nucleotide targeted pathways. The purpose of this review is to summarize and highlight recent findings about Ca2+ homeostasis in cardiac sympathetic neurons and how modulation of second messengers can drive neurotransmission and affect myocyte excitability in cardiovascular disease. Moreover, we discuss the underlying mechanism of abnormal intracellular Ca2+ homeostasis and signaling in these neurons, and speculate on the role of phosphodiesterases as a therapeutic target to restore normal autonomic transmission in disease states of overactivity.


Assuntos
Canais de Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Nucleotídeos Cíclicos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Humanos , Miócitos Cardíacos/patologia , Terminações Pré-Sinápticas/patologia
20.
J Exp Bot ; 72(7): 2757-2768, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33439999

RESUMO

Metal homeostasis is integral to normal plant growth and development. During plant-pathogen interactions, the host and pathogen compete for the same nutrients, potentially impacting nutritional homeostasis. Our knowledge of outcome of the interaction in terms of metal homeostasis is still limited. Here, we employed the X-ray fluorescence microscopy (XFM) beamline at the Australian Synchrotron to visualize and analyse the fate of nutrients in wheat leaves infected with Pyrenophora tritici-repentis, a necrotrophic fungal pathogen. We sought to (i) evaluate the utility of XFM for sub-micron mapping of essential mineral nutrients and (ii) examine the spatiotemporal impact of a pathogen on nutrient distribution in leaves. XFM maps of K, Ca, Fe, Cu, Mn, and Zn revealed substantial hyperaccumulation within, and depletion around, the infected region relative to uninfected control samples. Fungal mycelia were visualized as thread-like structures in the Cu and Zn maps. The hyperaccumulation of Mn in the lesion and localized depletion in asymptomatic tissue surrounding the lesion was unexpected. Similarly, Ca accumulated at the periphery of the symptomatic region and as microaccumulations aligning with fungal mycelia. Collectively, our results highlight that XFM imaging provides the capability for high-resolution mapping of elements to probe nutrient distribution in hydrated diseased leaves in situ.


Assuntos
Nutrientes , Síncrotrons , Ascomicetos , Austrália , Microscopia de Fluorescência , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA