Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 119: 110176, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37104916

RESUMO

Adaptor proteins represent key signalling molecules involved in regulating immune responses. The host's innate immune system recognizes pathogens via various surface and intracellular receptors. Adaptor molecules are centrally involved in different receptor-mediated signalling pathways, acting as bridges between the receptors and other molecules. The presence of adaptors in major signalling pathways involved in the pathogenesis of various chronic inflammatory diseases has drawn attention toward the role of these proteins in such diseases. In this review, we summarize the importance and roles of different adaptor molecules in macrophage-mediated signalling in various chronic disease states. We highlight the mechanistic roles of adaptors and how they are involved in protein-protein interactions (PPI) via different domains to carry out signalling. Hence, we also provide insights into how targeting these adaptor proteins can be a good therapeutic strategy against various chronic inflammatory diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Macrófagos
2.
Future Virol ; 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35935449

RESUMO

Aim: Mutations in the SARS-CoV-2 spike (S) protein have dramatically changed the transmissibility and pathogenicity of the virus. Therefore, we studied the binding affinity of Omicron spike-receptor binding domain (S-RBD) with human ACE2 receptor. Materials & methods: We used pyDockWEB and HADDOCK 2.4 docking for our study. Results: Computational docking indicated higher binding affinity of Omicron S-RBD as compared with wild-type SARS-CoV-2 and Delta S-RBD with ACE2. Interface analysis suggested four mutated residues of Omicron S-RBD for its enhanced binding. We also showed decreased binding affinity of Omicron and Delta S-RBDs with monoclonal antibodies. Conclusion: Compared with wild-type SARS-CoV-2, Omicron S-RBD exhibit higher binding with ACE2 and lower affinity against monoclonal antibodies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA