Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 29(7): 2185-2198, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38454085

RESUMO

Adult cytogenesis, the continuous generation of newly-born neurons (neurogenesis) and glial cells (gliogenesis) throughout life, is highly impaired in several neuropsychiatric disorders, such as Major Depressive Disorder (MDD), impacting negatively on cognitive and emotional domains. Despite playing a critical role in brain homeostasis, the importance of gliogenesis has been overlooked, both in healthy and diseased states. To examine the role of newly formed glia, we transplanted Glial Restricted Precursors (GRPs) into the adult hippocampal dentate gyrus (DG), or injected their secreted factors (secretome), into a previously validated transgenic GFAP-tk rat line, in which cytogenesis is transiently compromised. We explored the long-term effects of both treatments on physiological and behavioral outcomes. Grafted GRPs reversed anxiety-like deficits and demonstrated an antidepressant-like effect, while the secretome promoted recovery of only anxiety-like behavior. Furthermore, GRPs elicited a recovery of neurogenic and gliogenic levels in the ventral DG, highlighting the unique involvement of these cells in the regulation of brain cytogenesis. Both GRPs and their secretome induced significant alterations in the DG proteome, directly influencing proteins and pathways related to cytogenesis, regulation of neural plasticity and neuronal development. With this work, we demonstrate a valuable and specific contribution of glial progenitors to normalizing gliogenic levels, rescuing neurogenesis and, importantly, promoting recovery of emotional deficits characteristic of disorders such as MDD.


Assuntos
Modelos Animais de Doenças , Neurogênese , Neuroglia , Neurônios , Animais , Neurogênese/fisiologia , Neuroglia/metabolismo , Ratos , Masculino , Neurônios/metabolismo , Ansiedade/metabolismo , Transtorno Depressivo Maior/metabolismo , Ratos Transgênicos , Giro Denteado/metabolismo , Hipocampo/metabolismo , Emoções/fisiologia , Plasticidade Neuronal/fisiologia , Diferenciação Celular/fisiologia
2.
Mol Psychiatry ; 26(12): 7154-7166, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34521994

RESUMO

Impaired ability to generate new cells in the adult brain has been linked to deficits in multiple emotional and cognitive behavioral domains. However, the mechanisms by which abrogation of adult neural stem cells (NSCs) impacts on brain function remains controversial. We used a transgenic rat line, the GFAP-Tk, to selectively eliminate NSCs and assess repercussions on different behavioral domains. To assess the functional importance of newborn cells in specific developmental stages, two parallel experimental timeframes were adopted: a short- and a long-term timeline, 1 and 4 weeks after the abrogation protocol, respectively. We conducted in vivo electrophysiology to assess the effects of cytogenesis abrogation on the functional properties of the hippocampus and prefrontal cortex, and on their intercommunication. Adult brain cytogenesis abrogation promoted a time-specific installation of behavioral deficits. While the lack of newborn immature hippocampal neuronal and glial cells elicited a behavioral phenotype restricted to hyperanxiety and cognitive rigidity, specific abrogation of mature new neuronal and glial cells promoted the long-term manifestation of a more complex behavioral profile encompassing alterations in anxiety and hedonic behaviors, along with deficits in multiple cognitive modalities. More so, abrogation of 4 to 7-week-old cells resulted in impaired electrophysiological synchrony of neural theta oscillations between the dorsal hippocampus and the medial prefrontal cortex, which are likely to contribute to the described long-term cognitive alterations. Hence, this work provides insight on how newborn neurons and astrocytes display different functional roles throughout different maturation stages, and establishes common ground to reconcile contrasting results that have marked this field.


Assuntos
Disfunção Cognitiva , Hipocampo , Células-Tronco Neurais , Córtex Pré-Frontal , Animais , Cognição/fisiologia , Disfunção Cognitiva/patologia , Emoções , Hipocampo/patologia , Células-Tronco Neurais/patologia , Neurônios/patologia , Córtex Pré-Frontal/patologia , Ratos , Ratos Transgênicos
3.
J Thromb Thrombolysis ; 52(1): 30-41, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33011897

RESUMO

Microparticles (MPs) have been associated with inflammatory and thrombotic disease. High levels of MPs have been identified in patients with systemic lupus erythematosus (SLE) and associated with cardiovascular disease. We analyzed the procoagulant activity of MPs and its correlation with arteriosclerosis and arterial thrombosis in SLE patients. Eighty-seven patients with SLE were included: 22 (25.3%) with associated antiphospholipid syndrome (APS), 32 (36.8%) without antiphospholipid antibodies (aPL) and 33 (37.9%) with aPL but without APS. Subclinical arteriosclerosis, defined as the presence and number of plaques, was evaluated by ultrasonography of carotid arteries. Thrombotic events were confirmed by objective methods. The procoagulant activity of MPs was determined by a functional assay with annexin V. Subclinical arteriosclerosis was found in 19 (21.8%) patients. Thirteen episodes of arterial thrombosis and eight of venous thrombosis were recorded. The procoagulant activity of MPs was greater in patients with arterial thrombosis (17.28 ± 8.29 nM vs 12.96 ± 7.90 nM, p < 0.05). In patients without arterial thrombosis, greater procoagulant activity of MPs was identified in patients with multiple (≥ 2) carotid plaques (17.26 ± 10.63 nM vs 12.78 ± 7.15 nM, p = 0.04). In the multivariate analysis, the procoagulant activity of MPs was independently associated with multiple (≥ 2) carotid plaques and arterial thrombosis [OR = 1.094 (95%CI 1.010-1.185), p = 0.027 and OR = 1.101 (95%CI 1.025-1.182), p = 0.008; respectively]. In conclusion, the procoagulant activity of MPs is associated with arteriosclerosis burden and arterial thrombosis in patients with SLE.


Assuntos
Síndrome Antifosfolipídica , Arteriosclerose , Lúpus Eritematoso Sistêmico , Trombose , Anticorpos Antifosfolipídeos , Síndrome Antifosfolipídica/complicações , Humanos , Lúpus Eritematoso Sistêmico/complicações , Trombose/etiologia
4.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34769232

RESUMO

Changes in adult hippocampal cell proliferation and genesis have been largely implicated in depression and antidepressant action, though surprisingly, the underlying cell cycle mechanisms are largely undisclosed. Using both an in vivo unpredictable chronic mild stress (uCMS) rat model of depression and in vitro rat hippocampal-derived neurosphere culture approaches, we aimed to unravel the cell cycle mechanisms regulating hippocampal cell proliferation and genesis in depression and after antidepressant treatment. We show that the hippocampal dentate gyrus (hDG) of uCMS animals have less proliferating cells and a decreased proportion of cells in the G2/M phase, suggesting a G1 phase arrest; this is accompanied by decreased levels of cyclin D1, E, and A expression. Chronic fluoxetine treatment reversed the G1 phase arrest and promoted an up-regulation of cyclin E. In vitro, dexamethasone (DEX) decreased cell proliferation, whereas the administration of serotonin (5-HT) reversed it. DEX also induced a G1-phase arrest and decreased cyclin D1 and D2 expression levels while increasing p27. Additionally, 5-HT treatment could partly reverse the G1-phase arrest and restored cyclin D1 expression. We suggest that the anti-proliferative actions of chronic stress in the hDG result from a glucocorticoid-mediated G1-phase arrest in the progenitor cells that is partly mediated by decreased cyclin D1 expression which may be overcome by antidepressant treatment.


Assuntos
Ciclinas/metabolismo , Depressão , Fluoxetina/farmacologia , Hipocampo/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Depressão/patologia , Dexametasona/farmacologia , Modelos Animais de Doenças , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Hipocampo/patologia , Masculino , Células-Tronco Neurais/patologia , Ratos , Serotonina/farmacologia
5.
Glia ; 67(1): 182-192, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30461068

RESUMO

Epidemiologic studies have provided compelling evidence that prenatal stress, through excessive maternal glucocorticoids exposure, is associated with psychiatric disorders later in life. We have recently reported that anxiety associated with prenatal exposure to dexamethasone (DEX, a synthetic glucocorticoid) correlates with a gender-specific remodeling of microglia in the medial prefrontal cortex (mPFC), a core brain region in anxiety-related disorders. Gender differences in microglia morphology, the higher prevalence of anxiety in women and the negative impact of anxiety in cognition, led us to specifically evaluate cognitive behavior and associated circuits (namely mPFC-dorsal hippocampus, dHIP), as well as microglia morphology in female rats prenatally exposed to dexamethasone (in utero DEX, iuDEX). We report that iuDEX impaired recognition memory and deteriorated neuronal synchronization between mPFC and dHIP. These functional deficits are paralleled by microglia hyper-ramification in the dHIP and decreased ramification in the mPFC, showing a heterogeneous remodeling of microglia morphology, both postnatally and at adulthood in different brain regions, that differently affect mood and cognition. The chronic blockade of adenosine A2A receptors (A2A R), which are core regulators of microglia morphology and physiology, ameliorated the cognitive deficits, but not the anxiety-like behavior. Notably, A2A R blockade rectified both microglia morphology in the dHIP and the lack of mPFC-dHIP synchronization, further heralding their role in cognitive function.


Assuntos
Ansiedade/metabolismo , Disfunção Cognitiva/metabolismo , Microglia/metabolismo , Receptor A2A de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Ansiedade/induzido quimicamente , Ansiedade/psicologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/psicologia , Dexametasona/toxicidade , Feminino , Glucocorticoides/toxicidade , Masculino , Microglia/efeitos dos fármacos , Gravidez , Ratos , Ratos Wistar
6.
AAPS PharmSciTech ; 19(4): 1652-1661, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29516291

RESUMO

Etoposide-loaded poly(lactic-co-glycolic acid) implants were developed for intravitreal application. Implants were prepared by a solvent-casting method and characterized in terms of content uniformity, morphology, drug-polymer interaction, stability, and sterility. In vitro drug release was investigated and the implant degradation was monitored by the percent of mass loss. Implants were inserted into the vitreous cavity of rabbits' eye and the in vivo etoposide release profile was determined. Clinical examination and the Hen Egg Test-Chorioallantoic Membrane (HET-CAM) method were performed to evaluate the implant tolerance. The original chemical structure of the etoposide was preserved after incorporation in the polymeric matrix, which the drug was dispersed uniformly. In vitro, implants promoted sustained release of the drug and approximately 57% of the etoposide was released in 50 days. In vivo, devices released approximately 63% of the loaded drug in 42 days. Ophthalmic examination and HET-CAM assay revealed no evidence of toxic effects of implants. These results tend to show that etoposide-loaded implants could be potentially useful as an intraocular etoposide delivery system in the future.


Assuntos
Implantes de Medicamento/metabolismo , Etoposídeo/metabolismo , Ácido Láctico/metabolismo , Ácido Poliglicólico/metabolismo , Corpo Vítreo/metabolismo , Animais , Galinhas , Implantes de Medicamento/administração & dosagem , Implantes de Medicamento/química , Etoposídeo/administração & dosagem , Etoposídeo/química , Injeções Intravítreas , Ácido Láctico/administração & dosagem , Ácido Láctico/química , Masculino , Ácido Poliglicólico/administração & dosagem , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Coelhos , Corpo Vítreo/efeitos dos fármacos
7.
Psychiatry Res ; 339: 116033, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38968917

RESUMO

Major Depressive Disorder (MDD) is a pleomorphic disease with substantial patterns of symptoms and severity with mensurable deficits in several associated domains. The broad spectrum of phenotypes observed in patients diagnosed with depressive disorders is the reflection of a very complex disease where clusters of biological and external factors (e.g., response/processing of life events, intrapsychic factors) converge and mediate pathogenesis, clinical presentation/phenotypes and trajectory. Patient-derived induced pluripotent stem cells (iPSCs) enable their differentiation into specialised cell types in the central nervous system to explore the pathophysiological substrates of MDD. These models may complement animal models to advance drug discovery and identify therapeutic approaches, such as cell therapy, drug repurposing, and elucidation of drug metabolism, toxicity, and mechanisms of action at the molecular/cellular level, to pave the way for precision psychiatry. Despite the remarkable scientific and clinical progress made over the last few decades, the disease is still poorly understood, the incidence and prevalence continue to increase, and more research is needed to meet clinical demands. This review aims to summarise and provide a critical overview of the research conducted thus far using patient-derived iPSCs for the modelling of psychiatric disorders, with a particular emphasis on MDD.


Assuntos
Transtorno Depressivo Maior , Descoberta de Drogas , Células-Tronco Pluripotentes Induzidas , Humanos , Transtorno Depressivo Maior/terapia , Transtorno Depressivo Maior/metabolismo , Animais
8.
J Fungi (Basel) ; 10(6)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38921364

RESUMO

The skin mycobiota plays a significant role in infection risk, pathogen transmission, and personalized medicine approaches in intensive care settings. This prospective multicenter study aimed to enhance our understanding of intensive care units' (ICUs') Candida colonization dynamics, identify modifiable risk factors, and assess their impact on survival risk. Specimens were taken from 675, 203, and 110 patients at the admission (D1), 5th (D5), and 8th (D8) days of ICU stay, respectively. The patient's demographic and clinical data were collected. Candida isolates were identified by conventional culture-based microbiology combined with molecular approaches. Overall, colonization was 184/675 (27.3%), 87/203 (42.8%), and 58/110 (52.7%) on D1, D5, and D8, respectively. Candida colonization dynamics were significantly associated with ICU type (odds ratio (OR) = 2.03, 95% CI 1.22-3.39, p = 0.007), respiratory infection (OR = 1.74, 95% CI 1.17-2.58, p = 0.006), hemodialysis (OR = 2.19, 95% CI 1.17-4.10, p = 0.014), COVID-19 (OR = 0.37, 95% CI 0.14-0.99, p = 0.048), and with a poor 3-month outcome (p = 0.008). Skin Candida spp. colonization can be an early warning tool to generate valuable insights into the epidemiology, risk factors, and survival rates of critically ill patients, and should be considered for epidemiological surveillance.

9.
Heliyon ; 10(2): e24686, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38298667

RESUMO

The objective of this study is to evaluate the effect of Fiber-Reinforced Polymer (FRP) coatings on the mechanical properties of concrete structures, especially those used in the production of power distribution poles. These coatings consist of carbon, glass, hybrid, and aramid fibers embedded within a polyurethane matrix. Aramid fabrics from discarded ballistic garments were used to produce FRP. To achieve this, flexural, Charpy impact, and adhesion tests were conducted on the FRP-reinforced concrete. Additionally, Scanning Electron Microscopy (SEM) analyses were performed on the fracture regions of materials tested for impact resistance. The results indicated that all fabrics utilized in the study enhanced the mechanical properties of the concrete specimens in terms of flexural strength and toughness. The observed differences between the fiber types can be attributed to the unique chemical structures of each fiber and their respective interactions with the PU matrix at the interface. These findings suggest that such coatings can significantly improve the mechanical performance of concrete structures.

10.
J Cell Mol Med ; 17(8): 1048-58, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23890189

RESUMO

Expression of PAX2 (Paired-box 2) is suppressed through promoter methylation at the later stages of embryonic development, but eventually reactivated during carcinogenesis. Pax-2 is commonly expressed in the most prevalent renal cell tumour (RCT) subtypes-clear cell RCC (ccRCC), papillary RCC (pRCC) and oncocytoma--but not in chromophobe RCC (chrRCC), which frequently displays chromosome 10 loss (to which PAX2 is mapped). Herein, we assessed the epigenetic and/or genetic alterations affecting PAX2 expression in RCTs and evaluated its potential as biomarker. We tested 120 RCTs (30 of each main subtype) and four normal kidney tissues. Pax-2 expression was assessed by immunohistochemistry and PAX2 mRNA expression levels were determined by quantitative RT-PCR. PAX2 promoter methylation status was assessed by methylation-specific PCR and bisulfite sequencing. Chromosome 10 and PAX2 copy number alterations were determined by FISH. Pax-2 immunoexpression was significantly lower in chrRCC compared to other RCT subtypes. Using a 10% immunoexpression cut-off, Pax-2 immunoreactivity discriminated chrRCC from oncocytoma with 67% sensitivity and 90% specificity. PAX2 mRNA expression was significantly lower in chrRCC, compared to ccRCC, pRCC and oncocytoma, and transcript levels correlated with immunoexpression. Whereas no promoter methylation was found in RCTs or normal kidney, 69% of chrRCC displayed chromosome 10 monosomy, correlating with Pax-2 immunoexpression. We concluded that Pax-2 expression might be used as an ancillary tool to discriminate chrRCC from oncocytomas with overlapping morphological features. The biological rationale lies on the causal relation between Pax-2 expression and chromosome 10 monosomy, but not PAX2 promoter methylation, in chrRCC.


Assuntos
Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética , Fator de Transcrição PAX2/genética , Adenoma Oxífilo/diagnóstico , Adenoma Oxífilo/genética , Adenoma Oxífilo/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , Carcinoma de Células Renais/patologia , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Cromossomos Humanos Par 10/genética , Metilação de DNA/genética , Diagnóstico Diferencial , Feminino , Dosagem de Genes/genética , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Fator de Transcrição PAX2/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
AAPS PharmSciTech ; 14(2): 890-900, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23666789

RESUMO

Poly(ε-caprolactone) implants containing etoposide, an important chemotherapeutic agent and topoisomerase II inhibitor, were fabricated by a melt method and characterized in terms of content uniformity, morphology, drug physical state, and sterility. In vitro and in vivo drug release from the implants was also evaluated. The cytotoxic activity of implants against HeLa cells was studied. The short-term tolerance of the implants was investigated after subcutaneous implantation in mice. The original chemical structure of etoposide was preserved after incorporation into the polymeric matrix, in which the drug was dispersed uniformly. Etoposide was present in crystalline form in the polymeric implant. In vitro release study showed prolonged and controlled release of etoposide, which showed cytotoxicity activity against HeLa cells. After implantation, good correlation between in vitro and in vivo drug release was found. The implants demonstrated good short-term tolerance in mice. These results tend to show that etoposide-loaded implants could be potentially applied as a local etoposide delivery system.


Assuntos
Antineoplásicos Fitogênicos/química , Portadores de Fármacos , Etoposídeo/química , Poliésteres/química , Animais , Antineoplásicos Fitogênicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Cristalização , Preparações de Ação Retardada , Implantes de Medicamento , Etoposídeo/farmacologia , Feminino , Células HeLa , Humanos , Camundongos , Estrutura Molecular , Poliésteres/toxicidade , Solubilidade , Tecnologia Farmacêutica/métodos , Fatores de Tempo
12.
Cureus ; 15(2): e34721, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36909097

RESUMO

Introduction During the coronavirus disease 2019 (COVID-19) pandemic, a high number of patients needed to be admitted to the intensive care units (ICUs). Such a high demand led to periods where resources were insufficient and the triage of patients was needed. This study aims to evaluate the performance of the Acute Physiology and Chronic Health Evaluation (APACHE) II as a predictor of mortality in periods where triage protocols were implemented. Methods A single-center, longitudinal, retrospective cohort study was performed on patients admitted to the ICU between January 2020 and December 2021. Patients were divided into two periods: Period 1 (where patients needing ICU admission outnumbered the available resources) and Period 2 (where resources were adequate). The discriminative power of the APACHE II was checked using the receiver operating characteristic (ROC) curves. Calibration was accessed, and survival analysis was performed. Results Data from 428 patients were analyzed (229 in Period 1 and 199 in Period 2). The area under the ROC curve (AUROC) was 0.763 for Period 1 and 0.761 for Period 2, reflecting a good discriminative power. Logistic regression showed the APACHE II to be a significant predictor of mortality. The Hosmer-Lemeshow test demonstrated good calibration. The Youden index was determined, and a log-rank test showed a significantly lower survival for patients with higher APACHE II scores in both periods. Conclusions The APACHE II score is an effective tool in predicting mortality in patients with COVID-19 admitted to the ICU in a period where resource allocation and triage of patients are needed, paving a way for the future development of better and improved triage systems.

13.
Res Sq ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37034743

RESUMO

Adult cytogenesis, the continuous generation of newly-born neurons (neurogenesis) and glial cells (gliogenesis) throughout life, is highly impaired in several neuropsychiatric disorders, such as Major Depressive Disorder (MDD), impacting negatively on cognitive and emotional domains. Despite playing a critical role in brain homeostasis, the importance of gliogenesis has been overlooked, both in healthy and diseased states. To examine the role of newly formed glia, we transplanted Glial Restricted Precursors (GRPs) into the adult hippocampal dentate gyrus (DG), or injected their secreted factors (secretome), into a previously validated transgenic GFAP-tk rat line, in which cytogenesis is transiently compromised. We explored the long-term effects of both treatments on physiological and behavioral outcomes. Grafted GRPs reversed anxiety-like and depressive-like deficits, while the secretome promoted recovery of only anxiety-like behavior. Furthermore, GRPs elicited a recovery of neurogenic and gliogenic levels in the ventral DG, highlighting the unique involvement of these cells in the regulation of brain cytogenesis. Both GRPs and their secretome induced significant alterations in the DG proteome, directly influencing proteins and pathways related to cytogenesis, regulation of neural plasticity and neuronal development. With this work, we demonstrate a valuable and specific contribution of glial progenitors to normalizing gliogenic levels, rescueing neurogenesis and, importantly, promoting recovery of emotional deficits characteristic of disorders such as MDD.

14.
Cells ; 12(3)2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36766724

RESUMO

Major depressive disorder (MDD) is a multidimensional psychiatric disorder that is estimated to affect around 350 million people worldwide. Generating valid and effective animal models of depression is critical and has been challenging for neuroscience researchers. For preclinical studies, models based on stress exposure, such as unpredictable chronic mild stress (uCMS), are amongst the most reliable and used, despite presenting concerns related to the standardization of protocols and time consumption for operators. To overcome these issues, we developed an automated system to expose rodents to a standard uCMS protocol. Here, we compared manual (uCMS) and automated (auCMS) stress-exposure protocols. The data shows that the impact of the uCMS exposure by both methods was similar in terms of behavioral (cognition, mood, and anxiety) and physiological (cell proliferation and endocrine variations) measurements. Given the advantages of time and standardization, this automated method represents a step forward in this field of preclinical research.


Assuntos
Transtorno Depressivo Maior , Ratos , Animais , Ansiedade , Cognição
15.
Neurosci Biobehav Rev ; 133: 104498, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34953920

RESUMO

Major depression (MD) is the most common psychiatric disorder, predicted to affect around 264 million people worldwide. Although the etiology of depression remains elusive, the interplay between genetics and environmental factors, such as early life events, stress, exposure to drugs and health problems appears to underlie its development. Whereas depression is twice more prevalent in women than in men, most preclinical studies are performed in male rodents. In fact, females' physiology and reproductive experience are associated with changes to brain, behavior and endocrine profiles that may influence both stress, an important precipitating factor for depression, and response to treatment. These specificities emphasize the need to choose the most suitable models and readouts in order to better understand the pathophysiological mechanisms of depression in females. With this review, we aim to provide an overview of female animal models of depression highlighting the major differences between models, regarding behavioral, physiological, and molecular readouts, but also the major gaps in research, attending to the role of etiological factors, protocol variability and sex.


Assuntos
Depressão , Transtorno Depressivo Maior , Animais , Encéfalo , Modelos Animais de Doenças , Feminino , Masculino , Caracteres Sexuais , Estresse Psicológico
16.
Cells ; 11(3)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35159199

RESUMO

Depression is a prevalent, socially burdensome disease. Different studies have demonstrated the important role of astrocytes in the pathophysiology of depression as modulators of neurotransmission and neurovascular coupling. This is evidenced by astrocyte impairments observed in brains of depressed patients and the appearance of depressive-like behaviors upon astrocytic dysfunctions in animal models. However, little is known about the importance of de novo generated astrocytes in the mammalian brain and in particular its possible involvement in the precipitation of depression and in the therapeutic actions of current antidepressants (ADs). Therefore, we studied the modulation of astrocytes and adult astrogliogenesis in the hippocampal dentate gyrus (DG) of rats exposed to an unpredictable chronic mild stress (uCMS) protocol, untreated and treated for two weeks with antidepressants-fluoxetine and imipramine. Our results show that adult astrogliogenesis in the DG is modulated by stress and imipramine. This study reveals that distinct classes of ADs impact differently in the astrogliogenic process, showing different cellular mechanisms relevant to the recovery from behavioral deficits induced by chronic stress exposure. As such, in addition to those resident, the newborn astrocytes in the hippocampal DG might also be promising therapeutic targets for future therapies in the neuropsychiatric field.


Assuntos
Disfunção Cognitiva , Imipramina , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Hipocampo , Humanos , Imipramina/farmacologia , Imipramina/uso terapêutico , Mamíferos , Neurônios , Ratos
17.
Cell Prolif ; 55(2): e13165, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34970787

RESUMO

OBJECTIVES: The action of stress hormones, mainly glucocorticoids, starts and coordinates the systemic response to stressful events. The HPA axis activity is predicated on information processing and modulation by upstream centres, such as the hippocampus where adult-born neurons (hABN) have been reported to be an important component in the processing and integration of new information. Still, it remains unclear whether and how hABN regulates HPA axis activity and CORT production, particularly when considering sex differences. MATERIALS AND METHODS: Using both sexes of a transgenic rat model of cytogenesis ablation (GFAP-Tk rat model), we examined the endocrinological and behavioural effects of disrupting the generation of new astrocytes and neurons within the hippocampal dentate gyrus (DG). RESULTS: Our results show that GFAP-Tk male rats present a heightened acute stress response. In contrast, GFAP-Tk female rats have increased corticosterone secretion at nadir, a heightened, yet delayed, response to an acute stress stimulus, accompanied by neuronal hypertrophy in the basal lateral amygdala and increased expression of the glucocorticoid receptors in the ventral DG. CONCLUSIONS: Our results reveal that hABN regulation of the HPA axis response is sex-differentiated.


Assuntos
Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/diagnóstico por imagem , Sistema Hipófise-Suprarrenal/metabolismo , Diferenciação Sexual/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Corticosterona/metabolismo , Corticosterona/farmacologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Masculino , Neurônios/metabolismo , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Ratos Transgênicos , Receptores de Glucocorticoides/metabolismo , Diferenciação Sexual/fisiologia
18.
Compr Psychiatry ; 52(6): 754-62, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21193176

RESUMO

BACKGROUND: Alexithymia has been described as an important dimension in several medical diseases. Systemic lupus erythematosus (SLE) is a chronic condition characterized by unpredictable clinical manifestations. Our aim is to reveal which factors (psychological factors and quality of life dimensions) are associated with alexithymia in SLE patients. METHODS: Fifty-three sequential SLE patients (ACR criteria) and 41 asthma patients were studied by means of validated scales for alexithymia (Toronto Alexithymia Scale), psychopathology (Brief Symptom Inventory, Hospital Anxiety and Depression Scale), personality dimensions (NEO-FFI), and quality of life (Short Form-36 Health Survey). Systemic lupus erythematosus patient's clinical and laboratorial evaluation was performed by indicators of activity (Systemic Lupus Erythematosus Disease Activity Index) of accumulated damage (Systemic Lupus International Collaborating Clinics/ACR Damage Index), length of disease, and therapy. RESULTS: An association between alexithymia and psychopathological symptoms, and personality and quality of life dimensions was found. By means of multiple regression analysis, openness and depression were the 2 predictors for alexithymia in SLE patients. We found a high prevalence rate of alexithymia in SLE patients; however, when controlling for depression symptoms (Hospital Anxiety and Depression Scale-Depression, <7), we found a lower percentage of alexithymic traits than that of the total sample of SLE. CONCLUSION: Alexithymia was associated with psychological distress and with quality of life impairment. Understanding the role of psychological factors in SLE patients may contribute to a more comprehensive perspective of the disease, its impact on patient's daily routine, and how patients adapt emotionally to a chronic disease.


Assuntos
Sintomas Afetivos/psicologia , Lúpus Eritematoso Sistêmico/psicologia , Adolescente , Adulto , Sintomas Afetivos/etiologia , Idoso , Asma/psicologia , Estudos de Casos e Controles , Distribuição de Qui-Quadrado , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inventário de Personalidade , Escalas de Graduação Psiquiátrica , Psicologia , Qualidade de Vida/psicologia , Análise de Regressão , Índice de Gravidade de Doença , Estatísticas não Paramétricas , Estresse Psicológico/complicações , Estresse Psicológico/psicologia , Adulto Jovem
19.
Curr Med Chem ; 28(15): 2960-2973, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33106133

RESUMO

Paroxetine is a potent inhibitor of serotonin reuptake and is widely prescribed for the treatment of depression and other neurological disorders. The synthesis of paroxetine and the possibility to prepare derivatives with a specific substitution pattern that may allow their use as biological probes is an attractive topic especially for medicinal chemists engaged in neurosciences research. Considering the extensive work that was developed in the last decade on the total synthesis of paroxetine, this review summarizes the most important contributions in this field, organized according to the reagent that was used as a starting material. Most of the methods allowed to prepare paroxetine in 4-9 steps with an overall yield of 9-66%. Despite the progress made in this area, there is still room for improvement, searching for new eco-friendly and sustainable synthetic alternatives.


Assuntos
Paroxetina , Inibidores Seletivos de Recaptação de Serotonina , Antidepressivos/farmacologia , Humanos , Serotonina
20.
Sci Rep ; 11(1): 7091, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782479

RESUMO

The iron mine tailings accumulation in dams is an environmental and economic problem. The composite based on high-density polyethylene/iron mine tailing production for the application of wood plastic and some items of domestic plastic industry can be a good alternative to reduce the rejects in the environment. This work presents the influence of the processing methodology in the mechanical, thermal and morphological properties of composites based on the high-density polyethylene/iron mine tailing. Four methodology processing by continuous and/or batch mixing were available. The iron mine tailing particles in the polymer matrix promoted an increase in mechanical strength and thermal stability. Besides, the particles acted as flame retardant. The iron mine tailing materials produced using batch mixing showed more significant modifications in the properties due to the better dispersion of the filler as shown by scanning electron microscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA