Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 297(2): 100889, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34181944

RESUMO

APOBEC3s are innate single-stranded DNA cytidine-to-uridine deaminases that catalyze mutations in both pathogen and human genomes with significant roles in human disease. However, how APOBEC3s mutate a single-stranded DNA that is available momentarily during DNA transcription or replication in vivo remains relatively unknown. In this study, utilizing hepatitis B virus (HBV) viral mutations, we evaluated the mutational characteristics of individual APOBEC3s with reference to the HBV replication process through HBV whole single-strand (-)-DNA genome mutation analyses. We found that APOBEC3s induced C-to-T mutations from the HBV reverse transcription start site continuing through the whole (-)-DNA transcript to the termination site with variable efficiency, in an order of A3B >> A3G > A3H-II or A3C. A3B had a 3-fold higher mutation efficiency than A3H-II or A3C with up to 65% of all HBV genomic cytidines being converted into uridines in a single mutation event, consistent with the A3B localized hypermutation signature in cancer, namely, kataegis. On the other hand, A3C expression led to a 3-fold higher number of mutation-positive HBV genome clones, although each individual clone had a lower number of C-to-T mutations. Like A3B, A3C preferred both 5'-TC and 5'-CC sequences, but to a lesser degree. The APOBEC3-induced HBV mutations were predominantly detected in the HBV rcDNA but were not detectable in other intermediates including HBV cccDNA and pgRNA by primer extension of their PCR amplification products. These data demonstrate that APOBEC3-induced HBV genome mutations occur predominantly when the HBV RNA genome was reversely transcribed into (-)-DNA in the viral capsid.


Assuntos
Desaminases APOBEC/metabolismo , DNA Viral/genética , Vírus da Hepatite B/genética , Hepatite B/virologia , Mutação , RNA Viral/genética , Desaminases APOBEC/genética , Linhagem Celular Tumoral , Genoma Viral , Hepatite B/patologia , Vírus da Hepatite B/isolamento & purificação , Vírus da Hepatite B/patogenicidade , Humanos , RNA Viral/metabolismo , Transcrição Reversa
2.
Infect Immun ; 89(10): e0030121, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34097506

RESUMO

Recent studies suggest an anti-inflammatory protective role for class B scavenger receptor BI (SR-BI) in endotoxin-induced inflammation and sepsis. Other data, including ours, provide evidence for an alternative role of SR-BI, facilitating bacterial and endotoxin uptake and contributing to inflammation and bacterial infection. Enhanced endotoxin susceptibility of SR-BI-deficient mice due to their anti-inflammatory glucocorticoid deficiency complicates the understanding of SR-BI's role in endotoxemia/sepsis, calling for the use of alternative models. In this study, using human SR-BI (hSR-BI) and hSR-BII transgenic mice, we found that SR-BI and, to a lesser extent, its splicing variant SR-BII protect against LPS-induced lung damage. At 20 h after intratracheal LPS instillation, the extent of pulmonary inflammation and vascular leakage was significantly lower in hSR-BI and hSR-BII transgenic mice than in wild-type mice. Higher bronchoalveolar lavage fluid (BALF) inflammatory cell count and protein content and lung tissue neutrophil infiltration found in wild-type mice were associated with markedly (2 to 3 times) increased proinflammatory cytokine production compared to these parameters in transgenic mice following LPS administration. The markedly lower endotoxin levels detected in BALF of transgenic versus wild-type mice and the significantly increased BODIPY-LPS uptake observed in lungs of hSR-BI and hSR-BII mice 20 h after the i.t. LPS injection suggest that hSR-BI- and hSR-BII-mediated enhanced LPS clearance in the airways could represent the mechanism of their protective role against LPS-induced acute lung injury.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Receptores Depuradores/metabolismo , Receptores Depuradores Classe B/metabolismo , Células A549 , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Líquido da Lavagem Broncoalveolar , Linhagem Celular Tumoral , Citocinas/metabolismo , Modelos Animais de Doenças , Endotoxemia/metabolismo , Humanos , Inflamação/imunologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neutrófilos/metabolismo , Sepse/metabolismo
3.
J Biol Chem ; 292(32): 13459-13479, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28637869

RESUMO

Apolipoprotein B mRNA-editing enzyme catalytic subunit 3 (APOBEC-3) enzymes are cytidine deaminases that are broadly and constitutively expressed. They are often up-regulated during carcinogenesis and candidate genes for causing the major single-base substitution in cancer-associated DNA mutations. Moreover, APOBEC-3s are involved in host innate immunity against many viruses. However, how APOBEC-3 mutational activity is regulated in normal and pathological conditions remains largely unknown. Heat shock protein levels are often elevated in both carcinogenesis and viral infection and are associated with DNA mutations. Here, using mutational analyses of hepatitis B virus (HBV), we found that Hsp90 stimulates deamination activity of APOBEC-3G (A3G), A3B, and A3C during co-expression in human liver HepG2 cells. Hsp90 directly stimulated A3G deamination activity when the purified proteins were used in in vitro reactions. Hsp40, -60, and -70 also had variable stimulatory effects in the cellular assay, but not in vitro Sequencing analyses further demonstrated that Hsp90 increased both A3G cytosine mutation efficiency on HBV DNA and total HBV mutation frequency. In addition, Hsp90 shifted A3G's cytosine region selection in HBV DNA and increased A3G's 5' nucleoside preference for deoxycytidine (5'-CC). Furthermore, the Hsp90 inhibitor 17-N-allylamino-17-demethoxygeldanamycin dose dependently inhibited A3G and A3B mutational activity on HBV viral DNA. Hsp90 knockdown by siRNA or by Hsp90 active-site mutation also decreased A3G activity. These results indicate that heat shock proteins, in particular Hsp90, stimulate APOBEC-3-mediated DNA deamination activity, suggesting a potential physiological role in carcinogenesis and viral innate immunity.


Assuntos
Desaminase APOBEC-3G/metabolismo , Citidina Desaminase/metabolismo , DNA Viral/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Vírus da Hepatite B/metabolismo , Hepatócitos/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Desaminase APOBEC-3G/química , Desaminase APOBEC-3G/genética , Carcinogênese , Citidina/metabolismo , Citidina Desaminase/química , Citidina Desaminase/genética , Análise Mutacional de DNA , DNA Recombinante/química , DNA Recombinante/metabolismo , DNA Viral/química , Desaminação , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/genética , Células Hep G2 , Vírus da Hepatite B/genética , Vírus da Hepatite B/imunologia , Hepatócitos/imunologia , Hepatócitos/virologia , Humanos , Imunidade Inata , Antígenos de Histocompatibilidade Menor/química , Antígenos de Histocompatibilidade Menor/genética , Mutagênese , Taxa de Mutação , Fragmentos de Peptídeos/agonistas , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Mutação Puntual , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
4.
J Immunol ; 197(2): 611-9, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27316682

RESUMO

Synthetic amphipathic helical peptides (SAHPs) designed as apolipoprotein A-I mimetics are known to bind to class B scavenger receptors (SR-Bs), SR-BI, SR-BII, and CD36, receptors that mediate lipid transport and facilitate pathogen recognition. In this study, we evaluated SAHPs, selected for targeting human CD36, by their ability to attenuate LPS-induced inflammation, endothelial barrier dysfunction, and acute lung injury (ALI). L37pA, which targets CD36 and SR-BI equally, inhibited LPS-induced IL-8 secretion and barrier dysfunction in cultured endothelial cells while reducing lung neutrophil infiltration by 40% in a mouse model of LPS-induced ALI. A panel of 20 SAHPs was tested in HEK293 cell lines stably transfected with various SR-Bs to identify SAHPs with preferential selectivity toward CD36. Among several SAHPs targeting both SR-BI/BII and CD36 receptors, ELK-B acted predominantly through CD36. Compared with L37pA, 5A, and ELK SAHPs, ELK-B was most effective in reducing the pulmonary barrier dysfunction, neutrophil migration into the lung, and lung inflammation induced by LPS. We conclude that SAHPs with relative selectivity toward CD36 are more potent at inhibiting acute pulmonary inflammation and dysfunction. These data indicate that therapeutic strategies using SAHPs targeting CD36, but not necessarily mimicking all apolipoprotein A-I functions, may be considered a possible new treatment approach for inflammation-induced ALI and pulmonary edema.


Assuntos
Lesão Pulmonar Aguda/imunologia , Anti-Inflamatórios/farmacologia , Antígenos CD36/antagonistas & inibidores , Inflamação/imunologia , Lesão Pulmonar Aguda/patologia , Animais , Apolipoproteína A-I/imunologia , Modelos Animais de Doenças , Células HEK293 , Humanos , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/farmacologia
5.
J Immunol ; 196(7): 3135-47, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26936883

RESUMO

The class B scavenger receptors BI (SR-BI) and BII (SR-BII) are high-density lipoprotein receptors that recognize various pathogens, including bacteria and their products. It has been reported that SR-BI/II null mice are more sensitive than normal mice to endotoxin-induced inflammation and sepsis. Because the SR-BI/II knockout model demonstrates multiple immune and metabolic disorders, we investigated the role of each receptor in the LPS-induced inflammatory response and tissue damage using transgenic mice with pLiv-11-directed expression of human SR-BI (hSR-BI) or human SR-BII (hSR-BII). At 6 h after i.p. LPS injection, transgenic hSR-BI and hSR-BII mice demonstrated markedly higher serum levels of proinflammatory cytokines and 2- to 3-fold increased expression levels of inflammatory mediators in the liver and kidney, compared with wild-type (WT) mice. LPS-stimulated inducible NO synthase expression was 3- to 6-fold higher in the liver and kidney of both transgenic strains, although serum NO levels were similar in all mice. Despite the lower high-density lipoprotein plasma levels, both transgenic strains responded to LPS by a 5-fold increase of plasma corticosterone levels, which were only moderately lower than in WT animals. LPS treatment resulted in MAPK activation in tissues of all mice; however, the strongest response was detected for hepatic extracellular signal-regulated protein kinase 1 and 2 and kidney JNK of both transgenic mice. Histological examination of hepatic and renal tissue from LPS-challenged mice revealed more injury in hSR-BII, but not hSR-BI, transgenic mice versus WT controls. Our findings demonstrate that hSR-BII, and to a lesser extent hSR-BI, significantly increase LPS-induced inflammation and contribute to LPS-induced tissue injury in the liver and kidney, two major organs susceptible to LPS toxicity.


Assuntos
Injúria Renal Aguda/genética , Injúria Renal Aguda/imunologia , Antígenos CD36/genética , Lipopolissacarídeos/imunologia , Hepatopatias/genética , Hepatopatias/imunologia , Proteínas de Membrana Lisossomal/genética , Receptores Depuradores/genética , Injúria Renal Aguda/patologia , Animais , Antígenos CD36/metabolismo , Linhagem Celular , Citocinas/sangue , Citocinas/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Mediadores da Inflamação/sangue , Mediadores da Inflamação/metabolismo , Hepatopatias/patologia , Proteínas de Membrana Lisossomal/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Especificidade de Órgãos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Depuradores/metabolismo
7.
Kidney Int ; 89(4): 809-22, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26994575

RESUMO

Scavenger receptor CD36 participates in lipid metabolism and inflammatory pathways important for cardiovascular disease and chronic kidney disease (CKD). Few pharmacological agents are available to slow the progression of CKD. However, apolipoprotein A-I-mimetic peptide 5A antagonizes CD36 in vitro. To test the efficacy of 5A, and to test the role of CD36 during CKD, we compared wild-type to CD36 knockout mice and wild-type mice treated with 5A, in a progressive CKD model that resembles human disease. Knockout and 5A-treated wild-type mice were protected from CKD progression without changes in blood pressure and had reductions in cardiovascular risk surrogate markers that are associated with CKD. Treatment with 5A did not further protect CD36 knockout mice from CKD progression, implicating CD36 as its main site of action. In a separate model of kidney fibrosis, 5A-treated wild-type mice had less macrophage infiltration and interstitial fibrosis. Peptide 5A exerted anti-inflammatory effects in the kidney and decreased renal expression of inflammasome genes. Thus, CD36 is a new therapeutic target for CKD and its associated cardiovascular risk factors. Peptide 5A may be a promising new agent to slow CKD progression.


Assuntos
Antígenos CD36/antagonistas & inibidores , Peptídeos/uso terapêutico , Insuficiência Renal Crônica/prevenção & controle , Angiotensina II , Animais , Pressão Sanguínea , Quimiocina CXCL1/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos , Fibrose , Corantes Fluorescentes , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Rim/imunologia , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nefrectomia , Peptídeos/farmacologia , Insuficiência Renal Crônica/metabolismo , Obstrução Ureteral/imunologia , Obstrução Ureteral/patologia
8.
J Immunol ; 188(3): 1371-80, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22205027

RESUMO

Class B scavenger receptors (SR-B) are lipoprotein receptors that also mediate pathogen recognition, phagocytosis, and clearance as well as pathogen-induced signaling. In this study we report that three members of the SR-B family, namely, CLA-1, CLA-2, and CD36, mediate recognition of bacteria not only through interaction with cell wall LPS but also with cytosolic chaperonin 60. HeLa cells stably transfected with any of these SR-Bs demonstrated markedly (3- to 5-fold) increased binding and endocytosis of Escherichia coli, LPS, and chaperonin 60 (GroEL) as revealed by both FACS analysis and confocal microscopy imaging. Increased pathogen (E. coli, LPS, and GroEL) binding to SR-Bs was also associated with the dose-dependent stimulation of cytokine secretion in the order of CD36 > CLA-2 > CLA-1 in HEK293 cells. Pathogen-induced IL-6-secretion was reduced in macrophages from CD36- and SR-BI/II-null mice by 40-50 and 30-40%, respectively. Intravenous GroEL administration increased plasma IL-6 and CXCL1 levels in mice. The cytokine responses were 40-60% lower in CD36(-/-) relative to wild-type mice, whereas increased cytokine responses were found in SR-BI/II(-/-) mice. While investigating the discrepancy of in vitro versus in vivo data in SR-BI/II deficiency, SR-BI/II(-/-) mice were found to respond to GroEL administration without increases in either plasma corticosterone or aldosterone as normally seen in wild-type mice. SR-BI/II(-/-) mice with mineralocorticoid replacement demonstrated an ∼40-50% reduction in CXCL1 and IL-6 responses. These results demonstrate that, by recognizing and mediating inflammatory signaling of both bacterial cell wall LPS and cytosolic GroEL, all three SR-B family members play important roles in innate immunity and host defense.


Assuntos
Bactérias/imunologia , Antígenos CD36/imunologia , Inflamação/imunologia , Receptores Depuradores Classe B/imunologia , Transdução de Sinais/imunologia , Animais , Chaperonina 60/imunologia , Chaperonina 60/farmacologia , Citocinas/metabolismo , Escherichia coli/imunologia , Células HeLa , Humanos , Imunidade Inata , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Camundongos , Receptores Depuradores Classe B/deficiência
9.
J Immunol ; 188(6): 2749-58, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22327076

RESUMO

Class B scavenger receptors (SR-Bs), such as SR-BI/II or CD36, bind lipoproteins but also mediate bacterial recognition and phagocytosis. In evaluating whether blocking receptors can prevent intracellular bacterial proliferation, phagocyte cytotoxicity, and proinflammatory signaling in bacterial infection/sepsis, we found that SR-BI/II- or CD36-deficient phagocytes are characterized by a reduced intracellular bacterial survival and a lower cytokine response and were protected from bacterial cytotoxicity in the presence of antibiotics. Mice deficient in either SR-BI/II or CD36 are protected from antibiotic-treated cecal ligation and puncture (CLP)-induced sepsis, with greatly increased peritoneal granulocytic phagocyte survival (8-fold), a drastic diminution in peritoneal bacteria counts, and a 50-70% reduction in systemic inflammation (serum levels of IL-6, TNF-α, and IL-10) and organ damage relative to CLP in wild-type mice. The survival rate of CD36-deficient mice after CLP was 58% compared with 17% in control mice. When compensated for mineralocorticoid and glucocorticoid deficiency, SR-BI/II-deficient mice had nearly a 50% survival rate versus 5% in mineralo-/glucocorticoid-treated controls. Targeting SR-B receptors with L-37pA, a peptide that functions as an antagonist of SR-BI/II and CD36 receptors, also increased peritoneal granulocyte counts, as well as reduced peritoneal bacteria and bacterium-induced cytokine secretion. In the CLP mouse sepsis model, L-37pA improved survival from 6 to 27%, reduced multiple organ damage, and improved kidney function. These results demonstrate that the reduction of both SR-BI/II- and CD36-dependent bacterial invasion and inflammatory response in the presence of antibiotic treatment results in granulocyte survival and local bacterial containment, as well as reduces systemic inflammation and organ damage and improves animal survival during severe infections.


Assuntos
Antígenos CD36/imunologia , Receptores Depuradores Classe B/imunologia , Sepse/imunologia , Animais , Antígenos CD36/metabolismo , Modelos Animais de Doenças , Granulócitos/imunologia , Granulócitos/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Fagocitose/imunologia , Receptores Depuradores Classe B/antagonistas & inibidores , Sepse/patologia
11.
J Lipid Res ; 54(9): 2450-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23812625

RESUMO

Scavenger receptor class B type I (SR-BI) is a multi-ligand receptor that binds a variety of lipoproteins, including high density lipoprotein (HDL) and low density lipoprotein (LDL), but lipoprotein(a) [Lp(a)] has not been investigated as a possible ligand. Stable cell lines (HEK293 and HeLa) expressing human SR-BI were incubated with protein- or lipid-labeled Lp(a) to investigate SR-BI-dependent Lp(a) cell association. SR-BI expression enhanced the association of both (125)I- and Alexa Fluor-labeled protein from Lp(a). By confocal microscopy, SR-BI was also found to promote the internalization of fluorescent lipids (BODIPY-cholesteryl ester (CE)- and DiI-labeled) from Lp(a), and by immunocytochemistry the cellular internalization of apolipoprotein(a) and apolipoprotein B. When dual-labeled ((3)H-cholesteryl ether,(125)I-protein) Lp(a) was added to cells expressing SR-BI, there was a greater relative increase in lipid uptake over protein, indicating that SR-BI mediates selective lipid uptake from Lp(a). Compared with C57BL/6 control mice, transgenic mice overexpressing human SR-BI in liver were found to have increased plasma clearance of (3)H-CE-Lp(a), whereas mouse scavenger receptor class B type I knockout (Sr-b1-KO) mice had decreased plasma clearance (fractional catabolic rate: 0.63 ± 0.08/day, 1.64 ± 0.62/day, and 4.64 ± 0.40/day for Sr-b1-KO, C57BL/6, and human scavenger receptor class B type I transgenic mice, respectively). We conclude that Lp(a) is a novel ligand for SR-BI and that SR-BI mediates selective uptake of Lp(a)-associated lipids.


Assuntos
Antígenos CD36/metabolismo , Lipoproteína(a)/metabolismo , Animais , Células HEK293 , Humanos , Lipoproteína(a)/sangue , Camundongos , Transporte Proteico
12.
RNA ; 16(5): 1040-52, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20348446

RESUMO

APOBEC-1 overexpression in liver has been shown to effectively reduce apoB-100 levels. However, nonspecific hypermutation and liver tumor formation potentially related to hypermutation in transgenic animals compromise its potential use for gene therapy. In studying apoB mRNA editing regulation, we found that the core editing auxiliary factor ACF dose-dependently increases APOBEC-1 nonspecific hypermutation and specific editing with variable site sensitivity. Overexpression of APOBEC-1 together with ACF in human hepatic HepG2 cells hypermutated apoB mRNAs 20%-65% at sites 6639, 6648, 6655, 6762, 6802, and 6845, in addition to the normal 90% editing at 6666. The hypermutation activity of APOBEC-1 was decreased to background levels by a single point APOBEC-1 mutation of P29F or E181Q, while 50% of wild-type control editing at the normal site was retained. The hypermutations on both apoB and novel APOBEC-1 target 1 (NAT1) mRNA were also decreased to background levels with P29F and E181Q mutants in rat liver primary culture cells. The loss of hypermutation with the mutants was associated with significantly decreased APOBEC-1/ACF interaction. These data suggest that nonspecific hypermutation induced by overexpressing APOBEC-1 can be virtually eliminated by site-specific mutation, while maintaining specific editing activity at the normal site, reopening the potential use of APOBEC-1 gene therapy for hyperlipidemia.


Assuntos
Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Mutação , Desaminase APOBEC-1 , Substituição de Aminoácidos , Animais , Apolipoproteínas B/genética , Arilamina N-Acetiltransferase/química , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Sequência de Bases , Linhagem Celular , Células Cultivadas , Citidina Desaminase/química , Primers do DNA/genética , Expressão Gênica , Hepatócitos/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Mutagênese Sítio-Dirigida , Edição de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
J Biol Chem ; 285(11): 8492-506, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20075072

RESUMO

Serum amyloid A (SAA) is a major acute phase protein involved in multiple physiological and pathological processes. This study provides experimental evidence that CD36, a phagocyte class B scavenger receptor, functions as a novel SAA receptor mediating SAA proinflammatory activity. The uptake of Alexa Fluor 488 SAA as well as of other well established CD36 ligands was increased 5-10-fold in HeLa cells stably transfected with CD36 when compared with mock-transfected cells. Unlike other apolipoproteins that bind to CD36, only SAA induced a 10-50-fold increase of interleukin-8 secretion in CD36-overexpressing HEK293 cells when compared with control cells. SAA-mediated effects were thermolabile, inhibitable by anti-SAA antibody, and also neutralized by association with high density lipoprotein but not by association with bovine serum albumin. SAA-induced cell activation was inhibited by a CD36 peptide based on the CD36 hexarelin-binding site but not by a peptide based on the thrombospondin-1-binding site. A pronounced reduction (up to 60-75%) of SAA-induced pro-inflammatory cytokine secretion was observed in cd36(-/-) rat macrophages and Kupffer cells when compared with wild type rat cells. The results of the MAPK phosphorylation assay as well as of the studies with NF-kappaB and MAPK inhibitors revealed that two MAPKs, JNK and to a lesser extent ERK1/2, primarily contribute to elevated cytokine production in CD36-overexpressing HEK293 cells. In macrophages, four signaling pathways involving NF-kappaB and three MAPKs all appeared to contribute to SAA-induced cytokine release. These observations indicate that CD36 is a receptor mediating SAA binding and SAA-induced pro-inflammatory cytokine secretion predominantly through JNK- and ERK1/2-mediated signaling.


Assuntos
Antígenos CD36/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Amiloide A Sérica/metabolismo , Animais , Sítios de Ligação , Antígenos CD36/química , Antígenos CD36/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Corantes Fluorescentes , Células HeLa , Humanos , Radioisótopos do Iodo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Rim/citologia , Células de Kupffer/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Oligopeptídeos/metabolismo , Fosforilação/fisiologia , Estrutura Terciária de Proteína , Ratos , Ratos Endogâmicos WKY , Trombospondina 1/metabolismo , Transfecção
19.
J Immunol ; 181(10): 7147-56, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18981136

RESUMO

Scavenger receptor CD36 mediates Staphylococcus aureus phagocytosis and initiates TLR2/6 signaling. We analyzed the role of CD36 in the uptake and TLR-independent signaling of various bacterium, including Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium, S. aureus, and Enterococcus faecalis. Expression of human CD36 in HeLa cells increased the uptake of both gram-positive and gram-negative bacteria compared with the control mock-transfected cells. Bacterial adhesion was associated with pathogen phagocytosis. Upon CD36 transfection, HEK293 cells, which demonstrate no TLR2/4 expression, acquired LPS responsiveness as assessed by IL-8 production. The cells demonstrated a marked 5- to 15-fold increase in cytokine release upon exposure to gram-negative bacteria, while the increase was much smaller (1.5- to 3-fold) with gram-positive bacteria and lipoteichoic acid. CD36 down-regulation utilizing CD36 small interfering RNA reduced cytokine release by 40-50% in human fibroblasts induced by both gram-negative and gram-positive bacteria as well as LPS. Of all MAPK signaling cascade inhibitors tested, only the inhibitor of JNK, a stress-activated protein kinase, potently blocked E. coli/LPS-stimulated cytokine production. NF-kappaB inhibitors were ineffective, indicating direct TLR-independent signaling. JNK activation was confirmed by Western blot analyses of phosphorylated JKN1/2 products. Synthetic amphipathic peptides with an alpha-helical motif were shown to be efficient inhibitors of E. coli- and LPS-induced IL-8 secretion as well as JNK1/2 activation/phosphorylation in CD36-overexpressing cells. These results indicate that CD36 functions as a phagocytic receptor for a variety of bacteria and mediates signaling induced by gram-negative bacteria and LPS via a JNK-mediated signaling pathway in a TLR2/4-independent manner.


Assuntos
Infecções Bacterianas/imunologia , Antígenos CD36/imunologia , MAP Quinase Quinase 4/imunologia , Fagocitose/imunologia , Transdução de Sinais/imunologia , Animais , Infecções Bacterianas/metabolismo , Western Blotting , Antígenos CD36/metabolismo , Linhagem Celular , Citocinas/biossíntese , Inibidores Enzimáticos/farmacologia , Fibroblastos/imunologia , Fibroblastos/metabolismo , Fibroblastos/microbiologia , Imunofluorescência , Humanos , Lipopolissacarídeos/imunologia , MAP Quinase Quinase 4/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Microscopia Confocal , Fagocitose/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA