Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 17(1): e1008487, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33406089

RESUMO

Investigating metabolic functional capability of a human gut microbiome enables the quantification of microbiome changes, which can cause a phenotypic change of host physiology and disease. One possible way to estimate the functional capability of a microbial community is through inferring metagenomic content from 16S rRNA gene sequences. Genome-scale models (GEMs) can be used as scaffold for functional estimation analysis at a systematic level, however up to date, there is no integrative toolbox based on GEMs for uncovering metabolic functions. Here, we developed the MetGEMs (metagenome-scale models) toolbox, an open-source application for inferring metabolic functions from 16S rRNA gene sequences to facilitate the study of the human gut microbiome by the wider scientific community. The developed toolbox was validated using shotgun metagenomic data and shown to be superior in predicting functional composition in human clinical samples compared to existing state-of-the-art tools. Therefore, the MetGEMs toolbox was subsequently applied for annotating putative enzyme functions and metabolic routes related in human disease using atopic dermatitis as a case study.


Assuntos
Bactérias , Microbioma Gastrointestinal/genética , Metagenoma/genética , Metagenômica/métodos , Software , Bactérias/enzimologia , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , Fezes/microbiologia , Humanos , RNA Ribossômico 16S/genética
2.
Nucleic Acids Res ; 46(7): e38, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29346625

RESUMO

Completion of eukaryal genomes can be difficult task with the highly repetitive sequences along the chromosomes and short read lengths of second-generation sequencing. Saccharomyces cerevisiae strain CEN.PK113-7D, widely used as a model organism and a cell factory, was selected for this study to demonstrate the superior capability of very long sequence reads for de novo genome assembly. We generated long reads using two common third-generation sequencing technologies (Oxford Nanopore Technology (ONT) and Pacific Biosciences (PacBio)) and used short reads obtained using Illumina sequencing for error correction. Assembly of the reads derived from all three technologies resulted in complete sequences for all 16 yeast chromosomes, as well as the mitochondrial chromosome, in one step. Further, we identified three types of DNA methylation (5mC, 4mC and 6mA). Comparison between the reference strain S288C and strain CEN.PK113-7D identified chromosomal rearrangements against a background of similar gene content between the two strains. We identified full-length transcripts through ONT direct RNA sequencing technology. This allows for the identification of transcriptional landscapes, including untranslated regions (UTRs) (5' UTR and 3' UTR) as well as differential gene expression quantification. About 91% of the predicted transcripts could be consistently detected across biological replicates grown either on glucose or ethanol. Direct RNA sequencing identified many polyadenylated non-coding RNAs, rRNAs, telomere-RNA, long non-coding RNA and antisense RNA. This work demonstrates a strategy to obtain complete genome sequences and transcriptional landscapes that can be applied to other eukaryal organisms.


Assuntos
Genoma Fúngico/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Fúngico/genética , Saccharomyces cerevisiae/genética , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Metilação de DNA/genética , Genômica , Nanoporos , RNA Longo não Codificante/genética , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de DNA
3.
BMC Bioinformatics ; 18(Suppl 14): 483, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29297289

RESUMO

BACKGROUND: It is well-known that genome sequencing technologies are becoming significantly cheaper and faster. As a result of this, the exponential growth in sequencing data in public databases allows us to explore ever growing large collections of genome sequences. However, it is less known that the majority of available sequenced genome sequences in public databases are not complete, drafts of varying qualities. We have calculated quality scores for around 100,000 bacterial genomes from all major genome repositories and put them in a fast and easy-to-use database. RESULTS: Prokaryotic genomic data from all sources were collected and combined to make a non-redundant set of bacterial genomes. The genome quality score for each was calculated by four different measurements: assembly quality, number of rRNA and tRNA genes, and the occurrence of conserved functional domains. The dataBase of Bacterial Quality scores (dBBQs) was designed to store and retrieve quality scores. It offers fast searching and download features which the result can be used for further analysis. In addition, the search results are shown in interactive JavaScript chart framework using DC.js. The analysis of quality scores across major public genome databases find that around 68% of the genomes are of acceptable quality for many uses. CONCLUSIONS: dBBQs (available at http://arc-gem.uams.edu/dbbqs ) provides genome quality scores for all available prokaryotic genome sequences with a user-friendly Web-interface. These scores can be used as cut-offs to get a high-quality set of genomes for testing bioinformatics tools or improving the analysis. Moreover, all data of the four measurements that were combined to make the quality score for each genome, which can potentially be used for further analysis. dBBQs will be updated regularly and is freely use for non-commercial purpose.


Assuntos
Bactérias/genética , Bases de Dados Genéticas , Sequência de Bases , Mapeamento Cromossômico/métodos , Genoma Bacteriano , Genômica , Internet , Interface Usuário-Computador
4.
BMC Bioinformatics ; 18(Suppl 14): 471, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29297281

RESUMO

BACKGROUND: Zika virus (ZIKV) is an emerging human pathogen. Since its arrival in the Western hemisphere, from Africa via Asia, it has become a serious threat to pregnant women, causing microcephaly and other neuropathies in developing fetuses. The mechanisms behind these teratogenic effects are unknown, although epidemiological evidence suggests that microcephaly is not associated with the original, African lineage of ZIKV. The sequences of 196 published ZIKV genomes were used to assess whether recently proposed mechanistic explanations for microcephaly are supported by molecular level changes that may have increased its virulence since the virus left Africa. For this we performed phylogenetic, recombination, adaptive evolution and tetramer frequency analyses, and compared protein sequences for the presence of protease cleavage sites, Pfam domains, glycosylation sites, signal peptides, trans-membrane protein domains, and phosphorylation sites. RESULTS: Recombination events within or between Asian and Brazilian lineages were not observed, and likewise there were no differences in protease cleavage, glycosylation sites, signal peptides or trans-membrane domains between African and Brazilian strains. The frequency of Retinoic Acid Response Element (RARE) sequences was increased in Brazilian strains. Genetic adaptation was also apparent by tetramer signatures that had undergone major changes in the past but has stabilized in the Brazilian lineage despite subsequent geographic spread, suggesting the viral population presently propagates in the same host species in various regions. Evidence for selection pressure was recognized for several amino acid sites in the Brazilian lineage compared to the African lineage, mainly in nonstructural proteins, especially protein NS4B. A number of these positively selected mutations resulted in an increased potential to be phosphorylated in the Brazilian lineage compared to the African linage, which may have increased their potential to interfere with neural fetal development. CONCLUSIONS: ZIKV seems to have adapted to a limited number of hosts, including humans, during which its virulence increased. Its protein NS4B, together with NS4A, has recently been shown to inhibit Akt-mTOR signaling in human fetal neural stem cells, a key pathway for brain development. We hypothesize that positive selection of novel phosphorylation sites in the protein NS4B of the Brazilian lineage could interfere with phosphorylation of Akt and mTOR, impairing Akt-mTOR signaling and this may result in an increased risk for developmental neuropathies.


Assuntos
Genoma Viral , Microcefalia/virologia , Zika virus/genética , Zika virus/fisiologia , Adaptação Fisiológica/genética , África , Ásia , Sequência de Bases , Brasil , Linhagem Celular , Códon/genética , Feminino , Variação Genética , Interações Hospedeiro-Patógeno/genética , Humanos , Microcefalia/imunologia , Fosforilação , Filogenia , Gravidez , Estabilidade de RNA/genética , Recombinação Genética/genética , Seleção Genética , Virulência/genética , Zika virus/patogenicidade , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia
5.
J Fungi (Basel) ; 10(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38392784

RESUMO

Unlike most pathogenic oomycetes, Pythium insidiosum infects humans and animals instead of plants. P. insidiosum has three clinically relevant genotypes/clades that cause a severe disease called pythiosis. To develop strategies for infection control, it is necessary to understand the biology and pathogenesis of this pathogen. Investigating the evolutionary mechanisms behind the host-specific adaptation is vital, and comparative genomic analysis can help with this. To facilitate genomic analysis, an online bioinformatics tool called P. insidiosum (Pins) Gene Table v2.0 was developed. This tool includes genomic data from 37 genetically diverse P. insidiosum strains and four related species. The database contains 732,686 genes, grouped into 80,061 unique clusters and further divided into core and variable categories at genus, species, and genotype levels. A high-resolution phylogenomic relationship among P. insidiosum strains and other oomycetes was projected through hierarchical clustering and core gene analyses. 3156 P. insidiosum-specific genes were shared among all genotypes and may be responsible for causing disease in humans and animals. After comparing these species-specific genes to the MvirDB database, 112 had significant matches with 66 known virulence proteins, some of which might be involved in vascular occlusion, which is a pathological feature of pythiosis. The correlation of genotypes, geographic origins, and affected hosts of P. insidiosum suggests that clade-I strains are more specific to animals, while clade-II/III strains are more specific to humans. The clade-specific genes might link to host preference. In summary, Pins Gene Table v2.0 is a comprehensive genome database accessible to users with minimal bioinformatics experience for the analysis of P. insidiosum genomes.

6.
Sci Rep ; 14(1): 5805, 2024 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461361

RESUMO

The association between the gut mycobiome and its potential influence on host metabolism in the Thai Cohort was assessed. Two distinct predominant enterotypes, Saccharomyces (Sa) and Aspergillus/Penicillium (Ap/Pe) showed differences in gut mycobiota diversity and composition. Notably, the Sa enterotype exhibited lower evenness and richness, likely due to the prevalence of Saccharomyces, while both enterotypes displayed unique metabolic behaviors related to nutrient metabolism and body composition. Fiber consumption was positively correlated with adverse body composition and fasting glucose levels in individuals with the Sa enterotype, whereas in the Ap/Pe enterotype it was positively correlated with fat and protein intake. The metabolic functional analysis revealed the Sa enterotype associated with carbohydrate metabolism, while the Ap/Pe enterotype involved in lipid metabolism. Very interestingly, the genes involved in the pentose and glucuronate interconversion pathway, such as polygalacturonase and L-arabinose-isomerase, were enriched in the Sa enterotype signifying a metabolic capacity for complex carbohydrate degradation and utilization of less common sugars as energy sources. These findings highlight the interplay between gut mycobiome composition, dietary habits, and metabolic outcomes within the Thai cohort studies.


Assuntos
Microbioma Gastrointestinal , Micobioma , Humanos , Tailândia , Microbioma Gastrointestinal/genética , Dieta , Nutrientes
7.
J Biomed Inform ; 46(2): 200-11, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23159498

RESUMO

Cancer is a malignant disease that has caused millions of human deaths. Its study has a long history of well over 100years. There have been an enormous number of publications on cancer research. This integrated but unstructured biomedical text is of great value for cancer diagnostics, treatment, and prevention. The immense body and rapid growth of biomedical text on cancer has led to the appearance of a large number of text mining techniques aimed at extracting novel knowledge from scientific text. Biomedical text mining on cancer research is computationally automatic and high-throughput in nature. However, it is error-prone due to the complexity of natural language processing. In this review, we introduce the basic concepts underlying text mining and examine some frequently used algorithms, tools, and data sets, as well as assessing how much these algorithms have been utilized. We then discuss the current state-of-the-art text mining applications in cancer research and we also provide some resources for cancer text mining. With the development of systems biology, researchers tend to understand complex biomedical systems from a systems biology viewpoint. Thus, the full utilization of text mining to facilitate cancer systems biology research is fast becoming a major concern. To address this issue, we describe the general workflow of text mining in cancer systems biology and each phase of the workflow. We hope that this review can (i) provide a useful overview of the current work of this field; (ii) help researchers to choose text mining tools and datasets; and (iii) highlight how to apply text mining to assist cancer systems biology research.


Assuntos
Mineração de Dados , Neoplasias , Pesquisa Biomédica , Humanos , Biologia de Sistemas
8.
J Fungi (Basel) ; 9(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36836284

RESUMO

Pythium insidiosum has successfully evolved into a human/animal filamentous pathogen, causing pythiosis, a life-threatening disease, worldwide. The specific rDNA-based genotype of P. insidiosum (clade I, II, or III) is associated with the different hosts and disease prevalence. Genome evolution of P. insidiosum can be driven by point mutations, pass vertically to the offspring, and diverge into distinct lineages, leading to different virulence, including the ability to be unrecognized by the host. We conducted comprehensive genomic comparisons of 10 P. insidiosum strains and 5 related Pythium species using our online "Gene Table" software to investigate the pathogen's evolutionary history and pathogenicity. In total, 245,378 genes were found in all 15 genomes and grouped into 45,801 homologous gene clusters. Gene contents among P. insidiosum strains varied by as much as 23%. Our results showed a strong agreement between the phylogenetic analysis of 166 core genes (88,017 bp) identified across all genomes and the hierarchical clustering analysis of gene presence/absence profiles, suggesting divergence of P. insidiosum into two groups, clade I/II and clade III strains, and the subsequent segregation of clade I and clade II. A stringent gene content comparison using the Pythium Gene Table provided 3263 core genes exclusively presented in all P. insidiosum strains but no other Pythium species, which could involve host-specific pathogenesis and serve as biomarkers for diagnostic purposes. More studies focusing on characterizing the biological function of the core genes (including the just-identified putative virulence genes encoding hemagglutinin/adhesin and reticulocyte-binding protein) are needed to explore the biology and pathogenicity of this pathogen.

9.
BMC Res Notes ; 16(1): 316, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932861

RESUMO

OBJECTIVES: Pythium insidiosum causes a difficult-to-treat infectious condition called pythiosis, with high morbidity and mortality. So far, genome data of at least 10 strains of P. insidiosum, primarily classified in the phylogenetic clades I and II, have been sequenced using various next-generation sequencing platforms. The MGI short-read platform was employed to obtain genome data of 2 clade-III strains of P. insidiosum (recently reclassified as Pythium periculosum) from patients in Thailand and the United States. This work is a part of our attempt to generate a comprehensive genome database from diverse pathogen strains. DATA DESCRIPTION: A 150-bp paired-end library was prepared from a gDNA sample of P. insidiosum (P. periculosum) strains Pi057C3 and Pi050C3 (also known as ATCC90586) to generate draft genome sequences using an MGISEQ-2000RS sequencer. As a result, for the strain Pi057C3, we obtained a 42.5-Mb assembled genome (164x coverage) comprising 14,134 contigs, L50 of 241, N50 of 45,748, 57.6% CG content, and 12,147 ORFs. For the strain Pi050C3, we received a 43.3-Mb draft genome (230x coverage) containing 14,511 contigs, L50 of 245, N50 of 45,208, 57.7% CG content, and 12,249 ORFs. The genome sequences have been deposited in the NCBI/DDBJ databases under the accession numbers JAKCXM000000000.1 (strain Pi057C3) and JAKCXL000000000.1 (strain Pi050C3).


Assuntos
Pitiose , Pythium , Animais , Humanos , Filogenia , Pythium/genética , Genoma , Biblioteca Gênica
10.
Vet World ; 16(8): 1627-1635, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37766696

RESUMO

Background and Aim: The gut microbiome plays an important role in the overall health and well-being of dogs, influencing various physiological processes such as metabolism, nutrient absorption, and immune function. Edible insects are a sustainable and nutritious alternative protein source attracting increasing attention as a potential component of animal feeds, including pet food. However, little is known about the effects of insect-based diets on the gut microbiota of dogs. This study aimed to examine the fecal microbiota of dogs fed a diet that substituted common protein sources (poultry meal) with the house cricket (Acheta domesticus [AD]) or mulberry silkworm pupae (Bombyx mori pupae [BMp]) at different levels. Materials and Methods: Fifteen healthy adult mixed-breed dogs were systemically randomized and assigned into each block under a completed randomized block design into the following five experimental dietary groups: control diet, 10% AD, 20% AD, 7% BMp, or 14% BMp for 29 days. The amounts fed to the dogs were based on the daily energy requirement. Fecal samples were collected on days 14 and 29 and analyzed for bacterial community structure using 16S ribosomal ribonucleic acid gene sequencing. Results: At the phylum and genus levels, microbiota and their diversity were generally relatively similar among all treatments. The diets containing insects did not significantly alter the major phyla in the gut microbiome of dogs (p > 0.05). A few significant changes were found in the relative abundance of bacterial genera, with the levels of Allobaculum and Turicibacter being reduced in dogs fed a higher level of BMp. In contrast, only a decrease in Turicibacter was found in dogs fed the lower level of AD than the control diet (p < 0.05). Corynebacterium and Lactobacillus levels in the dogs fed 14% BMp were significantly increased compared with those in the control group (p < 0.05). Conclusion: These findings suggest that insect-based diets may slightly alter the gut microbiota of dogs. Further research is needed to fully understand the mechanisms by which insect-based diets influence the gut microbiota of dogs and the long-term potential health implications.

11.
BMC Res Notes ; 16(1): 271, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833791

RESUMO

OBJECTIVES: Pythium insidiosum is the causative agent of pythiosis, a difficult-to-treat condition, in humans and animals worldwide. Biological information about this filamentous microorganism is sparse. Genomes of several P. insidiosum strains were sequenced using the Illumina short-read NGS platform, producing incomplete genome sequence data. PacBio long-read platform was employed to obtain a better-quality genome of Pythium insidiosum. The obtained genome data could promote basic research on the pathogen's biology and pathogenicity. DATA DESCRIPTION: gDNA sample was extracted from the P. insidiosum strain Pi-S for whole-genome sequencing by PacBio long-read NGS platform. Raw reads were assembled using CANU (v2.1), polished using ARROW (SMRT link version 5.0.1), aligned with the original raw PacBio reads using pbmm2 (v1.2.1), consensus sequence checked using ARROW, and gene predicted using Funannotate pipeline (v1.7.4). The genome completion was assessed using BUSCO (v4.0.2). As a result, 840 contigs (maximum length: 1.3 Mb; N50: 229.9 Kb; L50: 70) were obtained. Sequence assembly showed a genome size of 66.7 Mb (178x coverage; 57.2% G-C content) that contained 20,375 ORFs. A BUSCO-based assessment revealed 85.5% genome completion. All assembled contig sequences have been deposited in the NCBI database under the accession numbers BBXB02000001 - BBXB02000840.


Assuntos
Pitiose , Pythium , Animais , Humanos , Tamanho do Genoma , Pitiose/genética , Pythium/genética , Pythium/isolamento & purificação , População do Sudeste Asiático , Sequenciamento Completo do Genoma , Tailândia
12.
Biology (Basel) ; 12(9)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37759661

RESUMO

Atopic dermatitis (AD) is a prevalent inflammatory skin disease that has been associated with changes in gut microbial composition in early life. However, there are limited longitudinal studies examining the gut microbiome in AD. This study aimed to explore taxonomy and metabolic functions across longitudinal gut microbiomes associated with AD in early childhood from 9 to 30 months of age using integrative data analysis within the Thai population. Our analysis revealed that gut microbiome diversity was not different between healthy and AD groups; however, significant taxonomic differences were observed. Key gut bacteria with short-chain fatty acids (SCFAs) production potentials, such as Anaerostipes, Butyricicoccus, Ruminococcus, and Lactobacillus species, showed a higher abundance in the AD group. In addition, metabolic alterations between the healthy and AD groups associated with vitamin production and host immune response, such as biosynthesis of menaquinol, succinate, and (Kdo)2-lipid A, were observed. This study serves as the first framework for monitoring longitudinal microbial imbalances and metabolic functions associated with allergic diseases in Thai children during early childhood.

13.
Biology (Basel) ; 12(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36671714

RESUMO

Gut microbiome plays an essential role in host health, and there is interest in utilizing diet to modulate the composition and function of microbial communities. Copra meal hydrolysate (CMH) is commonly used as a natural additive to enhance health. However, the gut microbiome is largely unknown at species level and is associated with metabolic routes involving short-chain fatty acids (SCFAs). In this study, we aimed to analyze, using integrative metagenomics, the predominant species and metabolic routes involved in SCFAs production in the human gut microbiome after treatment with CMH. The effect of CMH treatment on the Thai gut microbiome was demonstrated using 16S rRNA genes with whole-metagenome shotgun (WMGS) sequencing technology. Accordingly, these results revealed that CMH has potentially beneficial effects on the gut microbiome. Twelve predominant bacterial species, as well as their potential metabolic routes, were involved in cooperative microbiome networks under sugar utilization (e.g., glucose, mannose, or xylose) and energy supply (e.g., NADH and ATP) in relation to SCFAs biosynthesis. These findings suggest that CMH may be used as a potential prebiotic diet for modulating and maintaining the gut microbiome. To our knowledge, this is the first study to reveal the predominant bacterial species and metabolic routes in the Thai gut microbiome after treatment with potential prebiotics.

14.
J Fungi (Basel) ; 8(5)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628782

RESUMO

In contrast to most pathogenic oomycetes, which infect plants, Pythium insidiosum infects both humans and animals, causing a difficult-to-treat condition called pythiosis. Most patients undergo surgical removal of an affected organ, and advanced cases could be fetal. As a successful human/animal pathogen, P. insidiosum must tolerate body temperature and develop some strategies to survive and cause pathology within hosts. One of the general pathogen strategies is virulence factor secretion. Here, we used proteogenomic analysis to profile and validate the secretome of P. insidiosum, in which its genome contains 14,962 predicted proteins. Shotgun LC-MS/MS analysis of P. insidiosum proteins prepared from liquid cultures incubated at 25 and 37 °C mapped 2980 genome-predicted proteins, 9.4% of which had a predicted signal peptide. P. insidiosum might employ an alternative secretory pathway, as 90.6% of the validated secretory/extracellular proteins lacked the signal peptide. A comparison of 20 oomycete genomes showed 69 P. insidiosum-specific secretory/extracellular proteins, and these may be responsible for the host-specific infection. The differential expression analysis revealed 14 markedly upregulated proteins (particularly cyclophilin and elicitin) at body temperature which could contribute to pathogen fitness and thermotolerance. Our search through a microbial virulence database matched 518 secretory/extracellular proteins, such as urease and chaperones (including heat shock proteins), that might play roles in P. insidiosum virulence. In conclusion, the identification of the secretome promoted a better understanding of P. insidiosum biology and pathogenesis. Cyclophilin, elicitin, chaperone, and urease are top-listed secreted/extracellular proteins with putative pathogenicity properties. Such advances could lead to developing measures for the efficient detection and treatment of pythiosis.

15.
BMC Res Notes ; 14(1): 197, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34020710

RESUMO

OBJECTIVES: We employed the Illumina NGS platform to sequence genomes of 4 different strains of the pathogenic oomycete Pythium insidiosum, the causative agent of pythiosis. These strains were isolated from humans in Thailand (n = 3) and the United States (n = 1), and phylogenetically classified into clade-I, -II, and -III. Our study augmented the completeness of the P. insidiosum genome database for exploration of the biology, evolution, and pathogenesis of the pathogen. DATA DESCRIPTION: One paired-end library (180-bp insert) was prepared from a gDNA sample of P. insidiosum strains ATCC200269 (clade-I), Pi19 (clade-II), MCC18 (clade-II), and SIMI4763 (clade-III) for whole-genome sequencing by Illumina HiSeq2000/HiSeq2500 NGS platform. A range of 28.4-59.4 million raw reads, accounted for 3.0-7.3 Gb, were obtained and assembled into the genome sizes of 47.1 Mb (15,153 contigs; 85% completeness; 19,329 open reading frames [ORFs]) for strain ATCC200269, 35.4 Mb (14,576 contigs; 83% completeness; 13,895 ORFs) for strain Pi19, 34.5 Mb (11,084 contigs; 84% completeness; 13,249 ORFs) for strain MCC18, and 47.1 Mb (15,162 contigs; 85% completeness; 19,340 ORFs) for strain SIMI4763. The genome data can be downloaded from the NCBI/DDBJ databases under the accessions BCFN00000000.1 (ATCC200269), BCFS00000000.1 (Pi19), BCFT00000000.1 (MCC18), and BCFU00000000.1 (SIMI4763).


Assuntos
Pitiose , Pythium , Animais , Genoma , Humanos , Pitiose/genética , Pythium/genética , Análise de Sequência de DNA , Tailândia
16.
PeerJ ; 9: e12158, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616618

RESUMO

The impact of copra meal hydrolysate (CMH) on gut health was assessed by conducting a double-blinded, placebo-controlled study. Sixty healthy adult participants, aged 18-40 years were assigned to daily consume 3 g of CMH, 5 g of CMH or placebo in the form of drink powder for 21 days. Consumption of CMH at 3 g/d improved defecating conditions by reducing stool size and also relieved flatulence and bloating symptoms. Fecal samples were collected serially at the baseline before treatment, after the treatment and after a 2-week washout period. The gut microbiomes were similar among the treatment groups, with microbial community changes observed within the groups. Intake of CMH at 3 g/d led to increase microbial diversity and richness. Reduction of the ratio between Firmicutes to Bacteroidetes was observed, although it was not significantly different between the groups. The 3 g/d CMH treatment increased beneficial microbes in the group of fiber-degrading bacteria, especially human colonic Bacteroidetes, while induction of Bifidobacteriaceae was observed after the washout period. Intake of CMH led to increase lactic acid production, while 3 g/d supplement promoted the present of immunoglobulin A (IgA) in stool samples. The 3 g daily dose of CMH led to the potentially beneficial effects on gut health for healthy individuals.

17.
J Fungi (Basel) ; 7(9)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34575786

RESUMO

Association between the gut mycobiome and atopic dermatitis was investigated in 9-12-month-old infants using metagenomics. Two groups of atopic dermatitis infants were classified according to their symptom development as outgrown (recovered) and persisted (still undergoing). The evenness and diversity of the mycobiome in the persisted group were higher than in the healthy and outgrown groups. Dysbiosis of the microbiome in the persisted group was observed by a reduction in the Ascomycota/Basidiomycota ratio. Five fungi were selected as markers from each sample group. In the persisted group, Rhodotorula sp. abundance increased significantly, while Wickerhamomyces sp. and Kodamaea sp. abundance increased in the healthy group, and Acremonium sp. and Rhizopus sp. abundance increased considerably in the outgrown group. Metaproteomic analysis revealed that the persisted group had a high abundance of fungal proteins, particularly those from Rhodotorula sp. Unique proteins such as RAN-binding protein 1 and glycerol kinase from Rhodotorula sp. were hypothesized to be related to atopic dermatitis manifestation in infants.

18.
BMC Res Notes ; 13(1): 329, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32646477

RESUMO

OBJECTIVES: Genome sequences are a vital resource for accelerating the biological exploration of an organism of interest. Pythium destruens (a synonym of Pythium insidiosum) causes a difficult-to-treat infectious disease called pythiosis worldwide. Detection and management of pythiosis are challenging. Basic knowledge of the disease is lacking. Genomes of this organism isolated from different continents (i.e., Asia and the Americas) have been sequenced and publicly available. Here, we sequenced the genome of an Australian isolate of P. destruens. Genome data will facilitate the comparative analysis of this and related species at the molecular level. DATA DESCRIPTION: Genomic DNA of the P. destruens strain ATCC 64221, isolated from a horse with pythiosis in Australia, was used to prepare one paired-end library (with 180-bp insert) for next-generation sequencing, using the Illumina HiSeq 2500 short-read platform. Raw reads were cleaned and assembled by several bioinformatics tools. A total of 20,860,454 processed reads, accounted for 2,614,890,553 total bases, can be assembled into a 37.8-Mb genome, consisting 13,060 contigs (average length: 2896 bases; range: 300-142,967), N50 of 11,370 bases, and 2.9% 'N' composition. The genome was determined 85.9% completeness, contained 14,424 predicted genes, and can be retrieved online at the NCBI/DDBJ databases under the accession number BCFQ01000000.1.


Assuntos
Genoma , Doenças dos Cavalos , Pitiose , Pythium/genética , Animais , Austrália , Sequenciamento de Nucleotídeos em Larga Escala , Cavalos , Pythium/isolamento & purificação , Análise de Sequência de DNA
19.
Front Bioeng Biotechnol ; 8: 556413, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072720

RESUMO

Genomic DNA is the best "unique identifier" for organisms. Alignment-free phylogenomic analysis, simple, fast, and efficient method to compare genome sequences, relies on looking at the distribution of small DNA sequence of a particular length, referred to as k-mer. The k-mer approach has been explored as a basis for sequence analysis applications, including assembly, phylogenetic tree inference, and classification. Although this approach is not novel, selecting the appropriate k-mer length to obtain the optimal resolution is rather arbitrary. However, it is a very important parameter for achieving the appropriate resolution for genome/sequence distances to infer biologically meaningful phylogenetic relationships. Thus, there is a need for a systematic approach to identify the appropriate k-mer from whole-genome sequences. We present K-mer-length Iterative Selection for UNbiased Ecophylogenomics (KITSUNE), a tool for assessing the empirically optimal k-mer length of any given set of genomes of interest for phylogenomic analysis via a three-step approach based on (1) cumulative relative entropy (CRE), (2) average number of common features (ACF), and (3) observed common features (OCF). Using KITSUNE, we demonstrated the feasibility and reliability of these measurements to obtain empirically optimal k-mer lengths of 11, 17, and ∼34 from large genome datasets of viruses, bacteria, and fungi, respectively. Moreover, we demonstrated a feature of KITSUNE for accurate species identification for the two de novo assembled bacterial genomes derived from error-prone long-reads sequences, and for a published yeast genome. In addition, KITSUNE was used to identify the shortest species-specific k-mer accurately identifying viruses. KITSUNE is freely available at https://github.com/natapol/kitsune.

20.
Database (Oxford) ; 20192019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31260041

RESUMO

Oomycetes form a unique group of the fungal-like, aquatic, eukaryotic microorganisms. Lifestyle and pathogenicity of the oomycetes are diverse. Many pathogenic oomycetes affect a broad range of plants and cause enormous economic loss annually. Some pathogenic oomycetes cause destructive and deadly diseases in a variety of animals, including humans. No effective antimicrobial agent against the oomycetes is available. Genomic data of many oomycetes are currently available. Comparative analyses of the oomycete genomes must be performed to better understand the oomycete biology and virulence, as well as to identify conserved and biologically important proteins that are potential diagnostic and therapeutic targets of these organisms. However, a tool that facilitates comparative genomic studies of the oomycetes is lacking. Here, we described in detail the Oomycete Gene Table, which is an online user-friendly bioinformatic tool, designed to search, analyze, compare and visualize gene contents of 20 oomycetes in a customizable table. Genomic contents of other oomycete species, when available, can be added to the existing database. Some of the applications of the Oomycete Gene Table include investigations of phylogenomic relationships, as well as identifications of biologically important and pathogenesis-related genes of oomycetes. In summary, the Oomycete Gene Table is a simple and useful tool for comparative genomic analyses of oomycetes.


Assuntos
Bases de Dados Genéticas , Genoma , Genômica , Oomicetos , Filogenia , Oomicetos/genética , Oomicetos/metabolismo , Oomicetos/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA