RESUMO
The introduction of the exact nuclear Overhauser enhancement (eNOE) methodology to solution-state nuclear magnetic resonance (NMR) spectroscopy results in tighter distance restraints from NOEs than in convention analysis. These improved restraints allow for higher resolution in structure calculation and even the disentanglement of different conformations of macromolecules. While initial work primarily focused on technical development of the eNOE, structural studies aimed at the elucidation of spatial sampling in proteins and nucleic acids were published in parallel prior to 2018. The period of 2018-2022 saw a continued series of technical innovation, but also major applications addressing biological questions. Here, we review both aspects, covering topics from the implementation of non-uniform sampling of NOESY buildups, novel pulse sequences, adaption of the eNOE to solid-state NMR, advances in eNOE data analysis, and innovations in structural ensemble calculation, to applications to protein, RNA, and DNA structure elucidation.
Assuntos
Ácidos Nucleicos , Proteínas , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Proteínas/química , RNARESUMO
Interleukin-37 (IL-37), a member of the IL-1 family of cytokines, is a fundamental suppressor of innate and acquired immunities. Here, we used an integrative approach that combines biophysical, biochemical, and biological studies to elucidate the unique characteristics of IL-37. Our studies reveal that single amino acid mutations at the IL-37 dimer interface that result in the stable formation of IL-37 monomers also remain monomeric at high micromolar concentrations and that these monomeric IL-37 forms comprise higher antiinflammatory activities than native IL-37 on multiple cell types. We find that, because native IL-37 forms dimers with nanomolar affinity, higher IL-37 only weakly suppresses downstream markers of inflammation whereas lower concentrations are more effective. We further show that IL-37 is a heparin binding protein that modulates this self-association and that the IL-37 dimers must block the activity of the IL-37 monomer. Specifically, native IL-37 at 2.5 nM reduces lipopolysaccharide (LPS)-induced vascular cell adhesion molecule (VCAM) protein levels by â¼50%, whereas the monomeric D73K mutant reduced VCAM by 90% at the same concentration. Compared with other members of the IL-1 family, both the N and the C termini of IL-37 are extended, and we show they are disordered in the context of the free protein. Furthermore, the presence of, at least, one of these extended termini is required for IL-37 suppressive activity. Based on these structural and biological studies, we present a model of IL-37 interactions that accounts for its mechanism in suppressing innate inflammation.
Assuntos
Tolerância Imunológica , Imunidade Inata , Interleucina-1/metabolismo , Linhagem Celular , Cristalografia por Raios X , Humanos , Tolerância Imunológica/imunologia , Tolerância Imunológica/fisiologia , Interleucina-1/genética , Interleucina-1/fisiologia , Espectroscopia de Ressonância Magnética , Multimerização ProteicaRESUMO
Dynein, a homodimeric protein complex, plays a pivotal role in retrograde transportation along microtubules within cells. It consists of various subunits, among which the light intermediate chain (LIC) performs diverse functions, including cargo adaptor binding. In contrast to the vertebrate LIC homolog LIC1, LIC2 has received relatively limited characterization thus far, despite partially orthogonal functional roles. In this study, we present a near-to-complete backbone NMR chemical shift assignment of the C-terminal region of the light intermediate chain 2 of human dynein 1 (LIC2-C). We perform a comparative analysis of the secondary structure propensity of LIC2-C with the one previously reported for LIC1-C and show that the two transient helices in LIC1 that interact with motor adaptors are also present in LIC2.
RESUMO
Olduvai protein domains (formerly DUF1220) show the greatest human-specific increase in copy number of any coding region in the genome and are highly correlated with human brain evolution and cognitive disease. The majority of human copies are found within four NBPF genes organized in a variable number of a tandemly arranged three-domain blocks called Olduvai triplets. Here we show that these human-specific Olduvai domains are posttranslationally processed by the furin protease, with a cleavage site occurring once at each triplet. These findings suggest that all expanded human-specific NBPF genes encode proproteins consisting of many independent Olduvai triplet proteins which are activated by furin processing. The exceptional correlation of Olduvai copy number and brain size taken together with our new furin data, indicates the ultimate target of selection was a rapid increase in dosage of autonomously functioning Olduvai triplet proteins, and that these proteins are the primary active agent underlying Olduvai's role in human brain expansion.
Assuntos
Furina , Peptídeo Hidrolases , Domínios Proteicos , Humanos , Furina/genética , Genoma , Peptídeo Hidrolases/genética , Domínios Proteicos/genética , Proteínas/genéticaRESUMO
Olduvai protein domains, encoded by the NBPF gene family, are responsible for the largest increase in copy number of any protein-coding region in the human genome. This has spawned various genetics studies which have linked these domains to human brain development and divergence from our primate ancestors, as well as currently relevant cognitive diseases such as schizophrenia and autism spectrum disorder (ASD). There are six separate Olduvai domains which together form the majority of the various protein products of the NBPF genes. The six domains include three conserved domains (CON1-3), and three human-lineage-specific domains (HLS1-3) which occur in triplet. Here, we present the solution nuclear magnetic resonance backbone assignments for the CON1 domain, which has been linked to the severity of ASD. The data confirm that CON1 is an intrinsically disordered protein (IDP). Additionally, we use innovative Hα-detected experiments which allow us to not only assign the Hα atoms and N atoms of proline residues, but also to assign residues where HN-experiments suffered from peak overlap or broadening.
Assuntos
Transtorno do Espectro Autista , Animais , Transtorno do Espectro Autista/genética , Genoma Humano , Humanos , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos/genética , ProteínasRESUMO
Biliverdin reductase B (BLVRB) family members are general flavin reductases critical in maintaining cellular redox with recent findings revealing that BLVRB alone can dictate cellular fate. However, as opposed to most enzymes, the BLVRB family remains enigmatic with an evolutionarily changing active site and unknown structural and functional consequences. Here, we applied a multi-faceted approach that combines X-ray crystallography, NMR and kinetics methods to elucidate the structural and functional basis of the evolutionarily changing BLVRB active site. Using a panel of three BLVRB isoforms (human, lemur and hyrax) and multiple human BLVRB mutants, our studies reveal a novel evolutionary mechanism where coenzyme 'clamps' formed by arginine side chains at two co-evolving positions within the active site serve to slow coenzyme release (Positions 14 and 78). We find that coenzyme release is further slowed by the weaker binding substrate, resulting in relatively slow turnover numbers. However, different BLVRB active sites imposed by either evolution or mutagenesis exhibit a surprising inverse relationship between coenzyme release and substrate turnover that is independent of the faster chemical step of hydride transfer also measured here. Collectively, our studies have elucidated the role of the evolutionarily changing BLVRB active site that serves to modulate coenzyme release and has revealed that coenzyme release is coupled to substrate turnover.
Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Termodinâmica , Cristalografia por Raios X , Humanos , Modelos Moleculares , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/isolamento & purificação , Conformação ProteicaRESUMO
Many bacterial pathogens express small G5 domains that exist in the context of various membrane-anchored proteins and these G5 domains have been associated with colonization, cellular adhesion, and biofilm formation. However, despite over a decade since the computational prediction of these G5 domains, many remain uncharacterized, particularly those from Streptococcus pneumoniae. Of five previously predicted G5 domains we found that four of these, all derived from S. pneumoniae, are independently folded modules. As one of these exhibits extreme line broadening due to self-association, we were able to use NMR solution studies to probe the potential ligand interactions of the remaining three G5 domains. None of these G5 domains engage N-acetylglucosamine (NAG) as previously predicted but do interact with other small molecules that may modulate adherence to both bacteria and host cells. Specifically, while all G5 domains tested engage Zn, only one of these G5 domains engage heparin. NMR solution structural studies of the IgA1 Protease G5 (IgA1P-G5) and endo-beta-N-acetylglucosaminidase-D G5 (ENDD-G5) also facilitated identification of the ligand binding sites and confirm the typical G5 fold that comprises two connected ß-sheets with no canonical core. NMR relaxation experiments indicate flexibility on both ends and within the connecting regions between the ß-sheets. Our studies thus establish a basis for future biological experiments to test whether the ligands presented here are involved in bacterial adherence, either to bacteria or to host cells.
Assuntos
Proteínas de Bactérias/química , Streptococcus pneumoniae/química , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Ligantes , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Streptococcus pneumoniae/metabolismoRESUMO
Biliverdin reductase B (BLVRB) is a newly identified cellular redox regulator that catalyzes the NADPH-dependent reduction of multiple substrates. Through mass spectrometry analysis, we identified high levels of BLVRB in mature red blood cells, highlighting the importance of BLVRB in redox regulation. The BLVRB conformational changes that occur during conezyme/substrate binding and the role of dynamics in BLVRB function, however, remain unknown. Through a combination of NMR, kinetics, and isothermal titration calorimetry studies, we determined that BLVRB binds its coenzyme 500-fold more tightly than its substrate. While the active site of apo BLVRB is highly dynamic on multiple timescales, active site dynamics are largely quenched within holo BLVRB, in which dynamics are redistributed to other regions of the enzyme. We show that a single point mutation of Arg78âAla leads to both an increase in active site micro-millisecond motions and an increase in the microscopic rate constants of coenzyme binding. This demonstrates that altering BLVRB active site dynamics can directly cause a change in functional characteristics. Our studies thus address the solution behavior of apo and holo BLVRB and identify a role of enzyme dynamics in coenzyme binding.
Assuntos
Coenzimas/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Sítios de Ligação , Domínio Catalítico , Coenzimas/genética , Coenzimas/metabolismo , Flavina-Adenina Dinucleotídeo/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação , NADP/química , NADP/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Conformação Proteica , Relação Estrutura-AtividadeRESUMO
IgA1 proteases (IgA1P) from diverse pathogenic bacteria specifically cleave human immunoglobulin A1 (IgA1) at the hinge region, thereby thwarting protective host immune responses. Streptococcus pneumoniae (S. pneumoniae) IgA1P shares no sequence conservation with serine or cysteine types of IgA1Ps or other known proteins, other than a conserved HExxH Zn-binding motif (1604-1608) found in metalloproteases. We have developed a novel expression system to produce the mature S. pneumoniae IgA1P and we have discovered that this form is both attached to the bacterial cell surface and released in its full form. Our data demonstrate that the S. pneumoniae IgA1P comprises two distinct regions that associate to form an active metalloprotease, the first such example of a metalloprotease that can be split in vitro and recombined to form an active enzyme. By capitalizing on this novel domain architecture, we show that the N-terminal region of S. pneumoniae IgA1P comprises the primary binding region for IgA1, although the C-terminal region of S. pneumoniae IgA1P is necessary for cleavage of IgA1. Our findings lend insight into the protein domain architecture of the S. pneumoniae IgA1P and function of this important virulence factor for S. pneumoniae infection.