Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(13): 6092-6102, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38507817

RESUMO

In this work, we illustrated the design and development of a metal-coordinated porous organic polymer (POP) namely VO@TPA-POP via a post-synthetic metalation strategy to incorporate oxo-vanadium sites in a pristine polymer (TPA-POP) having acetylacetonate (acac) as anchoring moiety. The as-synthesized VO@TPA-POP exhibited highly robust and porous framework, which has been utilized for thioanisole (TA) oxidation to its corresponding sulfoxide. The catalyst demonstrated notable stability and recyclability by maintaining its catalytic activity over multiple reaction cycles without any significant loss in activity. The X-ray absorption spectroscopy (XAS) and density functional theory (DFT) analysis establish the existence of V(+4) oxidation state along with the VO(O)4 active sites into the porous network and the most energetically feasible mechanistic pathway involved in the TA oxidation, respectively, indicating the role of electron density associated with vanadium center during the catalytic transformation. Thus, this work aims at the demonstration of versatility and potential of VO@TPA-POP as a porous heterogeneous catalyst for the TA oxidation followed by decontamination of sulfur mustards (HD's) to their corresponding less toxic sulfoxides in a more efficient and greener way.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38652824

RESUMO

Cancer immunotherapy has emerged as a promising therapeutic strategy to combat cancer effectively. However, it is hard to observe and quantify how this in vivo process happens. Three-dimensional (3D) microfluidic vessel-tumor models offer valuable capability to study how immune cells transport during cancer progression. We presented an advanced 3D vessel-supported tumor model consisting of the endothelial lumen and vessel network for the study of T cells' transportation. The process of T cell transport through the vessel network and interaction with tumor spheroids was represented and monitored in vitro. Specifically, we demonstrate that the endothelial glycocalyx serving in the T cells' transport can influence the endothelium-immune interaction. Furthermore, after vascular transport, how programmed cell death protein 1 (PD-1) immune checkpoint inhibition influences the delivered activated-T cells on tumor killing was evaluated. Our in vitro vessel-tumor model provides a microphysiologically engineered platform to represent T cell vascular transportation during tumor immunotherapy. The reported innovative vessel-tumor platform is believed to have the potential to explore the tumor-induced immune response mechanism and preclinically evaluate immunotherapy's effectiveness.

3.
Chem Asian J ; : e202400515, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899858

RESUMO

The energy sector has demonstrated significant enthusiasm for investigating post-combustion CO2 capture, storage, and separation. However, the practical application of current porous adsorbents is impeded by challenges related to cost competitiveness, stability, and scalability. Intregation of heteroatoms in the porous organic polymers (POPs) dispense it more susceptible for CO2 adsorption to attenuate green house gases. In this regard, two hydroxy rich hypercrosslinked POPs, namely Ph/Tt-POP have been developed by one-pot condensation polymerization using a facile synthetic strategy. The high surface areas of both the Ph/Tt-POP (1057 and 893 m2g-1, respectively), and the heteroatom functionality in the POP framework instigated us to explore our material for CO2 adsorption study. The CO2 uptake capacities in Ph/Tt-POP are found to be 2.45 and 2.2 mmol g-1, at 273 K respectively. Further, in-situ static 13C NMR experiment shows that CO2 molecules in Tt-POP appear to be less mobile than those in Ph-POP which probably due to the presence of triazine functional groups along with high abundant -OH groups in the Tt-POP framework. An in-depth study of the CO2 adsorption mechanism by density functional theory (DFT) calculations also shows that CO2 adsorption at the cages formed by two benzyl rings represents the most stable interaction and CO2 molecule is more favorably adsorbed on the Ph-POP with the more negative interaction energies values compared to that of Tt-POP. Further, Non-covalent interaction (NCI) plot reveals that CO2 molecules adsorb more on the Ph-POP than Tt-POP, which can be explain by hydrogen bond formation in case of Tt-POP repeating units turning aside CO2 molecule to interact with the Ph component. Overall, our present study reflects the comprising effects of surface area of the solid adsorbents as well as their functionality can be beneficial for developing efficient hypercrosslinked porous polymers as solid CO2 adsorbent.

4.
ACS Appl Mater Interfaces ; 16(27): 34437-34449, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38940318

RESUMO

Harvesting solar energy to produce value-added chemicals from carbon dioxide (CO2) presents a promising route for addressing the complexities of sustainable energy systems and environmental issues. In this context, the development of metal-coordinated porous organic polymers (POPs) offers a vital avenue for improving the photocatalytic performance of organic motifs. The current study presents a metal-integrated photocatalytic system (namely, Zn@BP-POP) developed via a one-pot Friedel-Crafts (F.C.) acylation strategy, for solid-gas phase photochemical CO2 reduction to CO (CO2RR). The postsynthetic incorporation of metal (Zn) active sites on the host polymeric backbone of BP-POP significantly influences the catalytic activity. Notably, Zn@BP-POP demonstrates good photocatalytic performance in the absence of any cocatalyst and photosensitizer yielding CO while impeding the competitive hydrogen evolution reaction (HER) from water. The experimental findings collectively propose that the observed catalytic activity and selectivity arise from the synergistic interplay between the singular zinc catalytic centers and the light-harvesting capacity of the highly conjugated polymeric backbone. Further, X-ray absorption spectroscopy (XAS) analysis has significantly highlighted the prominent role played by the ZnN2O4 single sites in the polymeric framework for activating the gaseous CO2 molecules. Further, time-dependent density functional theory (DFT) analysis also reveals the thermodynamic feasibility of CO2RR over HER under optimized reaction conditions. This work cumulatively presents an effective strategy to demonstrate the importance of metal-active sites and effectively establish their structure-activity relationship during photocatalysis.

5.
ACS Appl Mater Interfaces ; 16(17): 22066-22078, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629710

RESUMO

Development of crystalline porous materials for selective CO2 adsorption and storage is in high demand to boost the carbon capture and storage (CCS) technology. In this regard, we have developed a ß-keto enamine-based covalent organic framework (VM-COF) via the Schiff base polycondensation technique. The as-synthesized VM-COF exhibited excellent thermal and chemical stability along with a very high surface area (1258 m2 g-1) and a high CO2 adsorption capacity (3.58 mmol g-1) at room temperature (298 K). The CO2/CH4 and CO2/H2 selectivities by the IAST method were calculated to be 10.9 and 881.7, respectively, which were further experimentally supported by breakthrough analysis. Moreover, theoretical investigations revealed that the carbonyl-rich sites in a polymeric backbone have higher CO2 binding affinity along with very high binding energy (-39.44 KJ mol-1) compared to other aromatic carbon-rich sites. Intrigued by the best CO2 adsorption capacity and high CO2 selectivity, we have utilized the VM-COF for biogas purification produced by the biofermentation of municipal waste. Compared with the commercially available activated carbon, VM-COF exhibited much better purification ability. This opens up a new opportunity for the creation of functionalized nanoporous materials for the large-scale purification of waste-generated biogases to address the challenges associated with energy and the environment.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38293281

RESUMO

The COVID-19 pandemic has presented a significant challenge to the world's public health and led to over 6.9 million deaths reported to date. A rapid, sensitive, and cost-effective point-of-care virus detection device is essential for the control and surveillance of the contagious severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic. The study presented here aimed to demonstrate a solid-phase isothermal recombinase polymerase amplification coupled CRISPR-based (spRPA-CRISPR) assay for on-chip multiplexed, sensitive and visual COVID-19 DNA detection. The assay targets the SARS-CoV-2 structure protein encoded genomes and can simultaneously detect two specific genes without cross-interaction. The amplified target sequences were immobilized on the one-pot device surface and detected using the mixed Cas12a-crRNA collateral cleavage of reporter-released fluorescent signal when specific genes were recognized. The endpoint signal can be directly visualized for rapid detection of COVID-19. The system was tested with samples of a broad range of concentrations (20 to 2 × 104 copies) and showed analytical sensitivity down to 20 copies per microliter. Furthermore, a low-cost blue LED flashlight (~$12) was used to provide a visible SARS-CoV-2 detection signal of the spRPA-CRISPR assay which could be purchased online easily. Thus, our platform provides a sensitive and easy-to-read multiplexed gene detection method that can specifically identify low concentration genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA