Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Immunol ; 211(12): 1844-1857, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37909827

RESUMO

Prior studies have defined multiple, but inconsistent, roles for the enigmatic pattern recognition receptor NLRX1 in regulating several cancer-associated biological functions. In this study, we explore the role of NLRX1 in the highly metastatic murine 4T1 mammary tumor model. We describe a functional dichotomy of NLRX1 between two different cellular contexts: expression in healthy host cells versus expression in the 4T1 tumor cells. Using Nlrx1-/- mice engrafted with 4T1 tumors, we demonstrate that NLRX1 functions as a tumor suppressor when expressed in the host cells. Specifically, NLRX1 in healthy host cells attenuates tumor growth and lung metastasis through suppressing characteristics of epithelial-mesenchymal transition and the lung metastatic niche. Conversely, we demonstrate that NLRX1 functions as a tumor promoter when expressed in 4T1 tumor cells using gain- and loss-of-function studies both in vitro and in vivo. Mechanistically, NLRX1 in the tumor cells augments 4T1 aggressiveness and metastasis through regulating epithelial-mesenchymal transition hallmarks, cell death, proliferation, migration, reactive oxygen species levels, and mitochondrial respiration. Collectively, we provide critical insight into NLRX1 function and establish a dichotomous role of NLRX1 in the 4T1 murine mammary carcinoma model that is dictated by cellular context.


Assuntos
Neoplasias Mamárias Animais , Animais , Camundongos , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Transição Epitelial-Mesenquimal , Metástase Neoplásica , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
2.
Mol Biol Rep ; 50(9): 7283-7294, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37422537

RESUMO

PURPOSE: Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is well known for its unique ability to induce apoptosis in cancer cells but not normal cells. However, a subpopulation of cancer cells exist that does not respond to toxic doses of TRAIL. In this study, we aimed to identify key factors regulating TRAIL resistance in breast cancer. METHODS: rhTRAIL (recombinant human TRAIL) resistant cells (TR) isolated from TRAIL sensitive MDA-MB-231 parental cells (TS) were confirmed using trypan blue assay, cell viability assay and AO/EtBr (acridine orange/ethidium bromide) staining. Microarray was performed followed by analysis using DAVID and Cytoscape bioinformatics software to identify the candidate hub gene. Gene expression of the candidate gene was confirmed using real-time PCR and western blot. Candidate gene was overexpressed via transient transfection to identify its significance in the context of rhTRAIL. Breast cancer patient data was obtained from The Cancer Genome Atlas (TCGA) database. RESULTS: Whole transcriptome analysis identified 4907 differentially expressed genes (DEGs) between TS and TR cells. CDH1 was identified as the candidate hub gene, with 18-degree centrality. We further observed CDH1 protein to be downregulated, overexpression of which increased apoptosis in TR cells after rhTRAIL treatment. TCGA patient data analysis also showed CDH1 mRNA to be low in TRAIL resistant patient group compared to TRAIL sensitive group. CONCLUSION: CDH1 overexpression sensitizes TR cells towards rhTRAIL induced apoptosis. Therefore, we can hypothesize that CDH1 expression should be taken into account while performing TRAIL therapy in breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Apoptose , Sobrevivência Celular , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Antígenos CD , Caderinas
3.
Int J Hyperthermia ; 40(1): 2244206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37580047

RESUMO

Focused Ultrasound (FUS) is emerging as a promising primary and adjunct therapy for the treatment of cancer. This includes histotripsy, which is a noninvasive, non-ionizing, non-thermal ultrasound guided ablation modality. As histotripsy has progressed from bench-to-bedside, it has become evident that this therapy has benefits beyond local tumor ablation. Specifically, histotripsy has the potential to shift the local tumor microenvironment from immunologically 'cold' to 'hot'. This is associated with the production of damage associated molecular patterns, the release of a selection of proinflammatory mediators, and the induction of inflammatory forms of cell death in cells just outside of the treatment zone. In addition to the induction of this innate immune response, histotripsy can also improve engagement of the adaptive immune system and promote systemic anti-tumor immunity targeting distal tumors and metastatic lesions. These tantalizing observations suggest that, in settings of widely metastatic disease burden, selective histotripsy of a limited number of accessible tumors could be a means of maximizing responsiveness to systemic immunotherapy. More work is certainly needed to optimize treatment strategies that best synergize histotripsy parameters with innate and adaptive immune responses. Likewise, rigorous clinical studies are still necessary to verify the presence and repeatability of these phenomena in human patients. As this technology nears regulatory approval for clinical use, it is our expectation that the insights and immunomodulatory mechanisms summarized in this review will serve as directional guides for rational clinical studies to validate and optimize the potential immunotherapeutic role of histotripsy tumor ablation.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Neoplasias , Humanos , Microambiente Tumoral , Neoplasias/patologia , Ultrassonografia , Imunidade
4.
Anticancer Drugs ; 30(2): 167-178, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30418193

RESUMO

The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a member of cytokine superfamily, induces apoptosis in a number of tumor cells through the activation of extrinsic apoptotic pathway but shows little or no cytotoxicity toward normal cells. However some tumor cells are inherently resistant to TRAIL-mediated apoptosis, which needs to be addressed to establish TRAIL as a potential chemotherapeutic drug. In this study, our aim was to manipulate TRAIL-apoptosis pathway by hydroxychavicol (HCH), a polyphenol from Piper betel leaf, for the induction of apoptosis in TRAIL resistant chronic myeloid leukemia cell. When imatinib-resistant K562 cells were treated with HCH, it made these K562 cells sensitive to TRAIL. It was observed that HCH downregulated antiapoptotic proteins XIAP and FLIP, whereas the expression of TRAIL receptors, DR4 and DR5, remains unchanged. Moreover, we observed that reactive oxygen species or ROS played a crucial role in the downregulation of FLIP and XIAP because ROS scavenger significantly reversed the decrease of XIAP, and FLIP. Ubiquitin-proteasome pathway was observed to play a crucial role in the downregulation of XIAP and FLIP, as proteasomal inhibitor MG132 significantly reversed the downregulation of XIAP and FLIP. In conclusion, this study demonstrates the combinatorial treatment of TRAIL and HCH as promising alternative therapeutic approach to treat the imatinib-resistant leukemia, which are also resistant to TRAIL.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Eugenol/análogos & derivados , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Espécies Reativas de Oxigênio/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Regulação para Baixo , Sinergismo Farmacológico , Eugenol/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/genética , Células Tumorais Cultivadas , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
5.
Free Radic Biol Med ; 166: 265-276, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33631302

RESUMO

Regulation of anti-apoptotic protein FLICE-like inhibitory protein (FLIP) and X-linked inhibitor of apoptosis protein (XIAP) remains a crucial step in the cell fate determination and thus targeting these anti-apoptotic proteins could be a viable strategy for the treatment of cancer. However the regulation of FLIP and XIAP is not very well established till date. Here we have shown that ROS decreased XIAP and FLIP by activation of ubiquitin-proteasomal pathway in imatinib resistant K562 cells. Activation of the components of MAPK pathway, ERK and JNK, played a crucial role in XIAP and FLIP degradation because ectopic expression or knock down of ERK and JNK changed the pattern of ROS mediated down-regulation of these two proteins. We have also found that JNK and ERK differentially regulates FLIP and XIAP, respectively. Moreover, our data suggests that activated ERK decreased Akt phosphorylation and thus its binding to and stabilization of XIAP. On the other hand, JNK activation increased E3 ubiquitin ligase ITCH expression and its binding to FLIP which leads to its degradation. Thus, we have, for the first time elucidated that ROS mediated ERK-Akt crosstalk regulates XIAP. We have also shown for the first time that ROS regulates ITCH expression which controls FLIP degradation.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD , Leucemia Mielogênica Crônica BCR-ABL Positiva , Apoptose , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Peróxido de Hidrogênio , Mesilato de Imatinib/farmacologia , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA