RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: The Cissus gongylodes has traditionally been used in the diet of indigenous people in Brazil and in traditional medicine for kidney stone removal and inflammatory diseases. The active compounds responsible for these pharmacological activities are unknown. AIM OF THE STUDY: This study aims to isolate, for the first time, the compounds in the decoction of C. gongylodes leaves responsible for their anti-inflammatory and anti-urolithiatic ethnopharmacological properties. MATERIALS AND METHODS: The most active fractions of the C. gongylodes leaf decoction were fractionated using SPE-C18 and the compounds were purified through HPLC-UV-DAD. The decoction fractions and isolated compounds were evaluated for their anti-inflammatory and anti-urolithiatic activities. The anti-inflammatory activity was assessed using an ex vivo assay in human blood induced by LPS and calcium ionophore, measuring inflammatory mediators, PGE2 and LTB4. The anti-urolithiatic activity was evaluated using an in vitro experimental model with human urine to determine the dissolution of the most recurrent calcium oxalate (CaOx) crystals. Additionally, the decoction was chemically characterized through metabolomic analysis using UHPLC-ESI-HRMS. RESULTS: The isolated compounds from the decoction of C. gongylodes, including rutin, eriodictyol 3'-O-glycoside, and isoquercetin, have demonstrated significant multi-target actions. These components act as anti-inflammatory agents by inhibiting the release of main inflammatory mediators, PGE2 and LTB4. Additionally, they exhibit anti-urolithiatic properties, promoting the dissolution of calcium oxalate (CaOx) crystals. Furthermore, the characterization of the decoction by UHPLC-ESI-HRMS revealed a high content of flavonoids, mainly glycosylated flavonoids. CONCLUSIONS: The results support the traditional use of C. gongylodes decoction, identifying the compounds responsible for its anti-inflammatory and anti-urolithiatic effects. The decoction fractions and isolated compounds exhibited dual anti-inflammatory activity, effectively inhibiting key inflammatory pathways and potentially presenting fewer adverse effects while also promoting the dissolution of CaOx crystals associated with urolithiasis. The multi-target action displayed by C. gongylodes is particularly desirable in the treatment of urolithiasis, as inflammation and PGE2 production precede and contribute to the formation of CaOx crystals in the kidneys. Based on these actions, C. gongylodes emerges as a potent source of active compounds for the development of new treatments for urolithiasis.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Ocotea odorifera (Vell.) Rohwer has been used in traditional medicine in the south of Brazil for the treatment of inflammatory-related conditions, such as rheumatism. However, there is not any scientific evidence for popular use. AIMS OF THE STUDY: To investigate the O. odorifera anti-inflammatory potential and identification of the main active compounds through metabolomic approaches. MATERIALS AND METHODS: In order to in vivo evaluate the inhibition of the main inflammatory pathways, the leaf decoction, leaf extract, its fractions and the essential oils from leaves and branches were submitted to the ear oedema and the neutrophils recruitment assays. The samples were chemically investigated by UHPLC-HRMS or GC-MS. The multivariate statistical analysis (PLS-DA) was used to determine the substances correlated with the anti-inflammatory properties. RESULTS: The in vivo studies indicated a promissory anti-inflammatory effect on both oedema and neutrophil recruitment for some samples including the decoction; hydroethanolic, ethyl acetate, and chloroform fractions; and the essential oils. According to the PLS-DA, the S-(+)-reticuline was evidenced as one of the three compounds of the plant most correlated with both anti-inflammatory mechanisms. Thus, S-(+)-reticuline was isolated and the anti-inflammatory activity was confirmed. Moreover, for the first time, the dual inhibition of oedema and neutrophil recruitment was uncovered and reported. Another compound positively correlated with the anti-inflammatory activity is likely to be a new compound since zero hit on the comprehensive mass database were encountered. The compounds found in the essential oils also showed significant anti-inflammatory activity, and thus indeed the plant has different classes of active substances. CONCLUSIONS: The decoction of O. odorifera and different fractions from its ethanolic extract demonstrated anti-inflammatory activity through dual inhibition of oedema and neutrophil recruitment. Thus, corroborating the popular medicinal use of the decoction of leaves from O. odorifera as an anti-inflammatory medicine. Besides, reticuline, one of the main active compounds, was isolated and proved to display the dual mechanism of action, indicating the O. odorifera as a promising source of active compounds for the treatment of inflammatory conditions.