Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(9): 3300-3305, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33651594

RESUMO

We report the synthesis of colloidal EuS, La2S3, and LaS2 nanocrystals between 150 and 255 °C using rare-earth iodides in oleylamine. The sulfur source dictates phase selection between La2S3 and LaS2, which are stabilized for the first time as colloidal nanocrystals. The indirect bandgap absorption of LaS2 shifts from 635 nm for nanoellipsoids to 365 nm for square-based nanoplates. Er3+ photoluminescence in La2S3:Er3+ (10%) is sensitized by the semiconducting host in the 390-450 nm range. The synthetic route yields tunable compositions of rare-earth sulfide nanocrystals. Interaction of light with these novel semiconducting nanostructures hosting rare-earth emitters should be attractive for applications that require broadband sensitization of RE emitters.

2.
Chem Commun (Camb) ; 56(23): 3429-3432, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32100801

RESUMO

Eu3+-doped sub-10 nm LaOCl nanocrystals with 43% photoluminescence quantum yield were prepared by solvothermal synthesis from hydrated rare-earth chlorides. As-obtained nanocrystals are nearly spherical, monodisperse and stable as colloidal dispersions. These combined features should intensify the interest for nanocrystalline rare-earth oxyhalides and their optical properties.

3.
ACS Appl Mater Interfaces ; 10(7): 6415-6423, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29359559

RESUMO

In/ZnO bulk compounds have been synthesized using a simple solid-state process. In this study, both the structural features and thermoelectric properties of the Zn1-xInxO series with ultralow indium content (0 ≤ x ≤ 0.02) have been studied. High-angle annular dark-field scanning transmission electron microscopy analyses highlight that indium has the ability to create multiple basal plane and pyramidal defects that produce ZnO domains with inverted polarity starting from dopant concentrations as low as 0.25 atom %. Interestingly, the formation of parallel inversion boundaries consisting of InO6 octahedra in the ZnO4 tetrahedra matrix is responsible for phonon scattering while increasing electrical conductivity, thereby enhancing the thermoelectric properties. This effect of multiple extended two-dimensional defects on the thermoelectric properties of ZnO is reported for the first time with such low indium doping. On the chemistry side, the present results point toward a lack of In solubility in the ZnO structure. Moreover, this study is a step forward to the synthesis of other thermoelectric compounds where dopant-induced planar defects in bulk transition metal compounds have the potential to enhance both phonon scattering and electronic conductivity.

4.
Sci Rep ; 8(1): 14136, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30237426

RESUMO

Compared to the limited absorption cross-section of conventional photoactive TiO2 nanoparticles (NPs), plasmonic metallic nanoparticles can efficiently convert photons from an extended spectrum range into energetic carriers because of the localized surface plasmon resonance (LSPR). Using these metal oxide semiconductors as shells for plasmonic nanoparticles (PNPs) that absorb visible light could extend their applications. The photophysics of such systems is performed using transient absorption measurements and steady extinction simulations and shows that the plasmonic energy transfer from the AgNWs core to the TiO2 shell results from a hot carrier injection process. Lifetimes obtained from photobleaching decay dynamics suggest that (i) the presence of gold nanoparticles (AuNPs) in AgNWs@TiO2@AuNPs systems can further promote the hot carrier transfer process via plasmonic coupling effects and (ii) the carrier dynamics is greatly affected by the shell thickness of TiO2. This result points out a definite direction to design appropriate nanostructures with tunable charge transfer processes toward photo-induced energy conversion applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA