Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Anat ; 243(4): 605-617, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37125509

RESUMO

The macroscopic and microscopic morphology of the appendicular skeleton was studied in the two species Raja asterias (order Rajiformes) and Torpedo marmorata (Order Torpediniformes), comparing the organization and structural layout of pectoral, pelvic, and tail fin systems. The shape, surface area and portance of the T. marmorata pectoral fin system (hydrodynamic lift) were conditioned by the presence of the two electric organs in the disk central part, which reduced the pectoral fin surface area, suggesting a lower efficiency of the "flapping effectors" than those of R. asterias. Otherwise, radials' rays alignment, morphology and calcification pattern showed in both species the same structural layout characterized in the fin medial zone by stiffly paired columns of calcified tiles in the perpendicular plane to the flat batoid body, then revolving and in the horizontal plane to continue as separate mono-columnar rays in the fin lateral zone with a morphology suggesting fin stiffness variance between medial/lateral zone. Pelvic fins morphology was alike in the two species, however with different calcified tiles patterns of the 1st compound radial and pterygia in respect to the fin-rays articulating perpendicularly to the latter, whose tile rows lay-out was also different from that of the pectoral fins radials. The T. marmorata tail-caudal fin showed a muscular and connective scaffold capable of a significant oscillatory forward thrust. On the contrary, the R. asterias dorsal tail fins were stiffened by a scaffold of radials-like calcified segments. Histomorphology, heat-deproteination technique and morphometry provided new data on the wing-fins structural layout which can be correlated to the mechanics of the Batoid swimming behavior and suggested a cartilage-calcification process combining interstitial cartilage growth (as that of all vertebrates anlagen) and a mineral deposition with accretion of individual centers (the tiles). The resulting layout showed scattered zones of un-mineralized matrix within the calcified mass and a less compact texture of the matrix calcified fibers suggesting a possible way of fluid diffusion throughout the mineralized tissue. These observations could explain the survival of the embedded chondrocytes in absence of a canalicular system as that of the cortical bone.


Assuntos
Asterias , Rajidae , Animais , Rajidae/anatomia & histologia , Natação , Torpedo , Nadadeiras de Animais/anatomia & histologia , Anatomia Comparada , Locomoção , Fenômenos Biomecânicos
2.
J Anat ; 240(6): 1127-1140, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35037257

RESUMO

The skeleton of the batoid fish consists of a mixture of calcified and uncalcified cartilage with a typical layout of mineral deposition toward the outer border, leaving an uncalcified central core in most of the skeleton segments. An exception is observed in the radials, where mineral deposition is central. Joints and endoskeleton segments were studied in two adult samples of Raja cf. polystigma. Histomorphology, mineral deposition pattern, and zonal chondrocyte duplication activity were compared among several endoskeleton segments, but with particular attention to the fin rays; in the first, the uncalcified cartilage is central with an outer layer ranging from mineralized tesserae to a continuous calcified coating, whereas in the second, the uncalcified cartilage surrounds one or more central calcified columns. The diarthroses have a joint cavity closed by a fibrous capsule and the sliding surfaces rest on the base of mineralized tesserae, whereas the interradial amphiarthroses show a layer of densely packed chondrocytes between the flat, calcified discs forming the base of neighboring radials. In the endoskeleton segments, three types of tesserae are distinguished, characterizing the phases of skeletal growth and mineralization which present differences in each endoskeleton segment. The chondrocyte density between central core, subtesseral layer, and radial external cartilage did not show significant differences, while there was a significant difference in chondrocyte density between the latter zones and the type c tesserae of the pelvic girdle. The histomorphology and morphometry observed in Raja cf. polystigma suggest a model of cartilage growth associated with structural stiffening without remodeling. A key point of this model is suggested to be the incomplete mineralization of the tesseral layer and the continuous growth of cartilage, both enabling fluid diffusion through the matrix fibril network of scattered, uncalcified cartilage zones inside and between the tesserae.


Assuntos
Rajidae , Animais , Calcificação Fisiológica , Cartilagem , Condrócitos , Minerais , Rajidae/anatomia & histologia
3.
J Fish Biol ; 101(1): 42-54, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35481825

RESUMO

The authors studied the morphology of the upper and lower jaws, vertebrae and dorsal-fin rays of the teleost fish Xiphias gladius to analyse the skeletal architecture and ossification pattern. The analogies and differences among these segments were investigated to identify a common morphogenetic denominator of the bone tissue osteogenesis and modeling. The large fat glands in the proximal upper jaw and their relationship to the underlying cartilage (absent in the lower jaw) suggested that there is a mechanism that explains rostral overgrowth in the Xiphiidae and Istiophoriidae families. Thus far, the compact structure of the distal rostrum has been interpreted as being the result of remodeling. Nonetheless, no evidence of cutting cones, scalloped outer border of osteons and sequence of bright-dark bands in polarized light was observed in this study, suggesting a primary osteon texture formed by compacting of collagen matrix and mineral deposition in the fat stroma lacunae of the bone, but without being oriented in layers of the collagen fibrils. A similar histology also characterizes the circular structures present in the other examined segments of the skeleton. The early phases of fibrillogenesis carried out by fibroblast-like cells occurred farther from the already-calcified bone surface inside the fat stroma lacunae. The fibrillar matrix was compacted and underwent mineral deposition near the previously calcified bone surface. This pattern of collagen matrix synthesis and calcification was different from that of mammalian osteoblasts, especially concerning the ability to build a lacuno-canalicular system among cells. Necrosis or apoptosis of the latter and refilling of the empty lacunae by mineral deposits might explain the anosteocytic bone formation.


Assuntos
Osteogênese , Perciformes , Animais , Osso e Ossos , Colágeno , Peixes , Mamíferos , Minerais , Osteoblastos
4.
J Anat ; 236(2): 305-316, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31820452

RESUMO

The 'fate' of growth plate hypertrophic chondrocytes has been long debated with two opposing theories: cell apoptosis or survival with transformation into osteogenic cells. This study was carried out on the proximal tibial growth plate of rabbits using light microscopy, scanning and transmission electron microscopy. We focused particularly on the orientation of the specimens included in order to define the mineral deposition and the vascular invasion lines and obtain histological and ultrastructural images at the corresponding height of the plate. Chondrocyte morphology transformation through the maturation process (characterized by vesicles and then large cytoplasmic lacunae before condensation, fragmentation and disappearance of the nuclear chromatin) did not correspond to that observed in the 'in vitro' apoptosis models. These findings rather suggested the passage of free water from the cartilage matrix into a still live cell (swelling). The level of these changes suggested a close relationship with the mineral deposition line. Furthermore, the study provided evidence that the metaphyseal capillaries could advance inside the columns of stacked hypertrophic chondrocytes (delimited by the intercolumnar septa) without the need for calcified matrix resorption because the thin transverse septa between the stacked chondrocyte (below the mineral deposition line) were not calcified. The zonal distribution of cell types (hypertrophic chondrocytes, osteoblasts, osteoclasts and macrophages) did not reveal osteoclasts or chondroclasts at this level. Morphological and morphometric analysis recorded globular masses of an amorphous, necrotic material in a zone 0-70 µm below the vascular invasion line occasionally surrounded by a membrane (indicated as 'hypertrophic chondrocyte ghosts'). These masses and the same material not bound by a membrane were surrounded by a large number of macrophages and other blood cell precursors, suggesting this could be the cause of macrophage recall and activation. The most recent hypotheses based on genetic and lineage tracing studies stating that hypertrophic chondrocytes can survive and transform into osteoblasts and osteocytes (trans-differentiation) were not confirmed by the ultrastructural morphology or by the zonal comparative counting and distribution of cell types below the vascular invasion line.


Assuntos
Condrócitos/citologia , Osteoblastos/citologia , Osteócitos/citologia , Osteogênese/fisiologia , Animais , Apoptose/fisiologia , Proliferação de Células/fisiologia , Masculino , Coelhos
5.
J Anat ; 233(6): 828-842, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30368800

RESUMO

Whether the 1st segment of the human autopod 1st ray is a 'true' metapodial with loss of the proximal or mid phalanx or the original basal phalanx with loss of the metacarpal has been a long-lasting discussion. The actual knowledge of the developmental pattern of upper autopod segments at a fetal age of 20-22 weeks, combined with X-ray morphometry of normal long bones of the hand in the growing ages, was used for analysis of the parameters, percentage length, position of epiphyseal ossification centers and proximal/distal growth rate. The symmetric growth pattern in the fetal anlagen changed to unidirectional in the postnatal development in relation to epiphyseal ossification formation. The percentage length assessment, the distribution of the epiphyseal ossification centers, and differential proximal/distal growth rate among the growing hand segments supported homology of most proximal segment of the thumb with the 2nd-5th proximal phalanges and that of the proximal phalanx of the thumb with the 2nd-5th mid phalanges in the same hand. Published case reports of either metanalysis of 'triphalangeal thumb' and 'proximal/distal epiphyseal ossification centers' were used to support the applied morphometric methodology; in particular, the latter did not give evidence of growth pattern inversion of the proximal segment of the thumb. The presented data support the hypothesis that during evolution, the lost segment of the autopod 1st ray is the metacarpal.


Assuntos
Mãos/embriologia , Mãos/crescimento & desenvolvimento , Ossos Metacarpais/embriologia , Ossos Metacarpais/crescimento & desenvolvimento , Adolescente , Criança , Pré-Escolar , Humanos , Lactente
6.
J Anat ; 224(2): 132-41, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24251983

RESUMO

Transformation of osteoblasts into osteocytes is marked by changes in volume and cell shape. The reduction of volume and the entrapment process are correlated with the synthesis activity of the cell which decreases consequently. This transformation process has been extensively investigated by transmission electron microscopy (TEM) but no data have yet been published regarding osteoblast-osteocyte dynamic histomorphometry. Scanning electron microscope (SEM) densitometric analysis was carried out to determine the osteoblast and open osteocyte lacunae density in corresponding areas of a rabbit femur endosteal surface. The lining cell density was 4900.1 ± 30.03 n mm(-2), the one of open osteocyte lacunae 72.89 ± 22.55 n mm(-2). This corresponds to an index of entrapment of one cell every 67.23 osteoblasts (approximated by defect). The entrapment sequence begins with flattening of the osteoblast and spreading of equatorial processes. At first these are covered by the new apposed matrix and then also the whole cellular body of the osteocyte undergoing entrapment. The dorsal aspect of the cell membrane suggests that closure of the osteocyte lacuna may be partially carried out by the same osteoblast-osteocyte which developed a dorsal secretory territory. A significant proportion of the endosteal surface was analysed by SEM, without observing any evidence of osteoblast mitotic figures. This indicates that recruitment of the pool of osteogenic cells in cortical bone lamellar systems occurs prior to the entrapment process. No further additions occurred once osteoblasts were positioned on the bone surface and began lamellar apposition. The number of active osteoblasts on the endosteal surface exceeded that of the cells which become incorporated as osteocytes (whose number was indicated by the number of osteocyte lacunae). Therefore such a balance must be equilibrated by the osteoblasts' transformation in resting lining cells or by apoptosis. The current work characterised osteoblast shape changes throughout the entrapment process, allowing approximate calculation of an osteoblast entrapment index in the rabbit endosteal cortex.


Assuntos
Fêmur/citologia , Osteoblastos/ultraestrutura , Osteócitos/ultraestrutura , Animais , Processos de Crescimento Celular , Densitometria , Fêmur/crescimento & desenvolvimento , Masculino , Coelhos , Valores de Referência
7.
Skeletal Radiol ; 43(9): 1205-15, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24859745

RESUMO

OBJECTIVE: Documentation through X-ray morphometry and histology of the steady phenotype expressed by FGFR3 gene mutation and interpolation of mechanical factors on spine and long bones dysmorphism. MATERIALS AND METHODS: Long bones and spine of eight thanatophoric dysplasia and three age-matched controls without skeletal dysplasia were studied after pregnancy termination between the 18th and the 22nd week with X-ray morphometry, histology, and molecular analysis. Statistical analysis with comparison between TD cases and controls and intraobserver/interobserver variation were applied to X-ray morphometric data. RESULTS: Generalized shortening of long bones was observed in TD. A variable distribution of axial deformities was correlated with chondrocyte proliferation inhibition, defective seriate cell columns organization, and final formation of the primary metaphyseal trabeculae. The periosteal longitudinal growth was not equally inhibited, so that decoupling with the cartilage growth pattern produced the typical lateral spurs around the metaphyseal growth plates. In spine, platyspondyly was due to a reduced height of the vertebral body anterior ossification center, while its enlargement in the transversal plane was not restricted. The peculiar radiographic and histopathological features of TD bones support the hypothesis of interpolation of mechanical factors with FGFR3 gene mutations. CONCLUSIONS: The correlated observations of X-ray morphometry, histopathology, and gene analysis prompted the following diagnostic workup for TD: (1) prenatal sonography suspicion of skeletal dysplasia; (2) post-mortem X-ray morphometry for provisional diagnosis; (3) confirmation by genetic tests (hot-spot exons 7, 10, 15, and 19 analysis with 80-90% sensibility); (4) in negative cases if histopathology confirms TD diagnosis, research of rare mutations through sequential analysis of FGFR3 gene.


Assuntos
Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Displasia Tanatofórica/diagnóstico , Displasia Tanatofórica/genética , Osso e Ossos/embriologia , Predisposição Genética para Doença/embriologia , Humanos , Mutação/genética , Diagnóstico Pré-Natal/métodos , Estatística como Assunto , Displasia Tanatofórica/embriologia , Tomografia Computadorizada por Raios X
8.
J Anat ; 222(2): 193-202, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23082756

RESUMO

A casting technique with methyl-methacrylate (MMA) was applied to the study of the osteon lacunar-canalicular network of human and rabbit cortical bone. The MMA monomer infiltration inside the vascular canals and from these into the lacunar-canalicular system was driven by capillarity, helped by evaporation and the resulting negative pressure in a system of small pipes. There was uniform, centrifugal penetration of the resin inside some osteons, but this was limited to a depth of four to five layers of lacunae. Moreover, not all of the osteon population was infiltrated. This failure can be the result of one of two factors: the incomplete removal of organic debris from the canal and canalicular systems, and lack of drainage at the osteon external border. These data suggest that each secondary osteon is a closed system with a peripheral barrier (represented by the reversal line). As the resin advances into the osteon, the air contained inside the canalicula is compressed and its pressure increases until infiltration is stopped. The casts gave a reliable visualization of the lacunar shape, position and connections between the lacunae without the need for manipulations such as cutting or sawing. Two systems of canalicula could be distinguished, the equatorial, which connected the lacunae (therefore the osteocytes) lying on the same concentric level, and the radial, which established connections between different levels. The equatorial canalicula radiated from the lacunar border forming ramifications on a planar surface around the lacuna, whereas the radial canalicula had a predominantly straight direction perpendicular to the equatorial plane. The mean length of the radial canalicula was 40.12 ± 10.26 µm in rabbits and 38.4 ± 7.35 µm in human osteons; their mean diameter was 174.4 ± 71.12 nm and 195.7 ± 79.58 nm, respectively. The mean equatorial canalicula diameter was 237 ± 66.04 nm in rabbit and 249.7 ± 73.78 nm in human bones, both significantly larger (P < 0.001) than the radial. There were no significant differences between the two species. The lacunar surface measured on the equatorial plane was higher in rabbit than in man, but the difference was not statistically significant. The cast of the lacunar-canalicular network obtained with the reported technique allows a direct, 3-D representation of the system architecture and illustrates how the connections between osteocytes are organized. The comparison with models derived by the assumption of the role of hydraulic conductance and other mechanistic functions provides descriptive, morphological data to the ongoing discussion on the Haversian system biology.


Assuntos
Fêmur/anatomia & histologia , Tíbia/anatomia & histologia , Resinas Acrílicas , Animais , Humanos , Masculino , Microscopia Eletrônica de Varredura , Modelos Anatômicos , Osteócitos/citologia , Coelhos , Técnicas de Réplica/métodos
9.
J Anat ; 223(3): 242-54, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23834434

RESUMO

The shape and structure of bones is a topic that has been studied for a long time by morphologists and biologists with the goal of explaining the laws governing their development, aging and pathology. The osteonal architecture of tibial and femoral mid-diaphyses was examined morphometrically with scanning electron microscopy in four healthy young male subjects. In transverse sections of the mid-diaphysis, the total area of the anterior, posterior, lateral and medial cortex sectors was measured and analysed for osteonal parameters including osteon number and density, osteon total and bone area and vascular space area. Osteons were grouped into four classes including cutting heads (A), transversely cut osteons (B), longitudinally cut osteons (C) and sealed osteons (D). The morphometric parameters were compared between the inner (endosteal) and outer (periosteal) half of the cortex. Of 5927 examined osteons, 24.4% cutting heads, 71.1% transversely cut osteons, 2.3% longitudinally cut osteons and 2.2% sealed osteons were found. The interosteonic bone (measured as the area in a lamellar system that has lost contact with its own central canal) corresponded to 51.2% of the endosteal and 52.4% of the periosteal half-cortex. The mean number of class A cutting heads and class B osteons was significantly higher in the periosteal than in the endosteal half-cortex (P < 0.001 and P < 0.05, respectively), whereas there was no significant difference in density. The mean osteon total area, osteon bone area and vascular space area of both classes A and B were significantly higher (P < 0.001 for all three parameters) in the endosteal than in the periosteal half-cortex. The significant differences between the two layers of the cortex suggest that the osteoclast activity is distributed throughout the whole cortical thickness, with more numerous excavations in the external layer, but larger resorption lacunae closer to the marrow canal. A randomly selected population of 109 intact class B osteons was examined at higher magnification (350×) to count osteocyte lacuna and to analyse their relationship with osteon size parameters. The distribution frequency of the mean number of osteocyte lacunae increased with the increment in the sub-classes of osteon bone area, whereas the density did not show significant differences. The number of osteocyte lacunae had a direct correlation with the osteon bone area and the mean osteon wall thickness, as well as the mean number of lamellae. The osteocyte lacunae density showed an inverse relationship. These data suggest a biological regulation of osteoblast activity with a limit to the volume of matrix produced by each cell and proportionality with the number of available cells in the space of the cutting cone (total osteon area). The collected data can be useful as a set of control parameters in healthy human bone for studies on bone aging and metabolic bone diseases.


Assuntos
Ósteon/anatomia & histologia , Adulto , Remodelação Óssea , Fêmur/ultraestrutura , Humanos , Masculino , Microscopia Eletroquímica de Varredura , Osteoblastos/citologia , Osteócitos/citologia , Tíbia/ultraestrutura
10.
Calcif Tissue Int ; 93(5): 453-61, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23929220

RESUMO

The wedges of the mid-diaphyseal osteotomies carried out to correct the femoral and/or tibial native deformity in type III osteogenesis imperfecta (OI III) were used to study the remodeling patterns and lamellar organization at the level of the major deformity. Histology and scanning electron microscopy (SEM) morphology showed abnormal cortical remodeling characterized by the failure to form a cylinder of compact bone with a regular marrow canal. Atypical, flattened, and large resorption lacunae with a wide resorption front on one side and systems of parallel lamellae on the opposite side were observed, resembling those formerly reported as drifting osteons. SEM morphometry documented a higher percentage of nonossified vascular/resorption area (44.3 %) in OI than in controls (13.6 %), a lower density of secondary osteons, and lower values for the parameters expressing the individual osteon size. The mean osteon total area, the mean central canal area, and the mean osteon bone area of two selected, randomized populations of secondary osteons were significantly higher (p < 0.001, p = 0.028, and p < 0.001, respectively) in control bones than in OI. The mean ossified matrix area was not significantly different, but the mean secondary osteon number and mean density were higher in controls (both p < 0.001). Osteon wedges were carried out to correct the native deformity of OI III and morphologic analysis suggested that the abnormal remodeling pattern (with "drifting osteons") may result from the altered load and tensile stresses on the deformed tubular bones.


Assuntos
Fêmur/anormalidades , Fêmur/ultraestrutura , Osteogênese Imperfeita/diagnóstico por imagem , Osteogênese Imperfeita/patologia , Densidade Óssea , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Fêmur/diagnóstico por imagem , Ósteon/diagnóstico por imagem , Ósteon/patologia , Ósteon/ultraestrutura , Humanos , Microscopia Eletrônica de Varredura , Radiografia , Tíbia/anormalidades , Tíbia/diagnóstico por imagem , Tíbia/ultraestrutura
11.
Microsc Res Tech ; 86(12): 1568-1582, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37493098

RESUMO

This study compares the skeletal calcification pattern of batoid Raja asterias with the endochondral ossification model of mammalians Homo sapiens and teleost Xiphias gladius. Skeletal mineralization serves to stiffen the mobile elements for locomotion. Histology, histochemistry, heat deproteination, scanning electron microscopy (SEM)/EDAX analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectrometry (FTIR) have been applied in the study. H. sapiens and X. gladius bone specimens showed similar profiles, R. asterias calcified cartilage diverges for higher water release and more amorphous bioapatite. In endochondral ossification, fetal calcified cartilage is progressively replaced by bone matrix, while R. asterias calcified cartilage remains un-remodeled throughout the life span. Ca2+ and PO4 3- concentration in extracellular matrix is suggested to reach the critical salts precipitation point through H2 O recall from extracellular matrix into both chondroblasts or osteoblasts. Cartilage organic phase layout and incomplete mineralization allow interstitial fluids diffusion, chondrocytes survival, and growth in a calcified tissue lacking of a vascular and canalicular system. HIGHLIGHTS: Comparative physico-chemical characterization (TGA, DTG and DSC) testifies the mass loss due to water release, collagen and carbonate decomposition of the three tested matrices. R. asterias calcified cartilage water content is higher than that of H. sapiens and X. gladius, as shown by the respectively highest dehydration enthalpy values. Lower crystallinity degree of R. asterias calcified cartilage can be related to the higher amount of collagen in amorphous form than in bone matrix. These data can be discussed in terms of the mechanostat theory (Frost, 1966) or by organic/inorganic phase transformation in the course evolution from fin to limbs. Mineral analysis documented different charactersof R. asterias vs H. sapiens and X. gladius calcified matrix.


Assuntos
Matriz Óssea , Calcinose , Humanos , Animais , Cartilagem , Colágeno/análise , Água/análise , Calcificação Fisiológica , Mamíferos
12.
J Anat ; 220(4): 372-83, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22324883

RESUMO

The kinetics of osteogenic cells within secondary osteons have been examined within a 2-D model. The linear osteoblast density of the osteons and the osteocyte lacunae density were compared with other endosteal lamellar systems of different geometries. The cell density was significantly greater in the endosteal appositional zone and was always flatter than the central osteonal canals. Fully structured osteons compared with early structuring (cutting cones) did not show any significant differences in density. The osteoblast density may remain constant because some of them leave the row and become embedded within matrix. The overall shape of the Haversian system represented a geometrical restraint and it was thought to be related to osteoblast-osteocyte transformation. To test this hypothesis of an early differentiation and recruitment of the osteoblast pool which completes the lamellar structure of the osteon, the number and density of osteoblasts and osteocyte lacunae were evaluated. In the central canal area, the mean osteoblast linear density and the osteocyte lacunae planar density were not significantly different among sub-classes (with the exclusion of the osteocyte lacunae of the 300-1000 µm(2) sub-class). The mean number of osteoblasts compared with osteocyte lacunae resulted in significantly higher numbers in the two sub-classes, no significant difference was seen in the two middle sub-classes with the larger canals, and there were significantly lower levels in the smallest central canal sub-class. The TUNEL technique was used to identify the morphological features of apoptosis within osteoblasts. It was found that apoptosis occurred during the late phase of osteon formation but not in osteocytes. This suggests a regulatory role of apoptosis in balancing the osteoblast-osteocyte equilibrium within secondary osteon development. The position of the osteocytic lacunae did not correlate with the lamellar pattern and the lacunae density in osteonal radial sectors was not significantly different. These findings support the hypothesis of an early differentiation of the osteoblast pool and the independence of the fibrillar lamellation from osteoblast-osteocyte transformation.


Assuntos
Ósteon/citologia , Osteoblastos/citologia , Osteócitos/citologia , Animais , Apoptose/fisiologia , Contagem de Células , Marcação In Situ das Extremidades Cortadas , Modelos Animais , Coelhos
13.
Microsc Res Tech ; 85(11): 3642-3652, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36250446

RESUMO

The relationship between cartilage growth - mineralization patterns were studied in adult Rajidae with X-ray morphology/morphometry, undecalcified resin-embedded, heat-deproteinated histology and scanning electron microscopy. Morphometry of the wing-fins, nine central rays of the youngest and oldest specimens documented a significant decrement of radials mean length between inner, middle and outer zones, but without a regular progression along the ray. This suggests that single radial length growth is regulated in such a way to align inter-radial joints parallel to the wing metapterygia curvature. Trans-illumination and heat-deproteination techniques showed polygonal and cylindrical morphotypes of tesserae, whose aligned pattern ranged from mono-columnar, bi-columnar, and multi-columnar up to the crustal-like layout. Histology of tessellated cartilage allowed to identify of zones of the incoming mineral deposition characterized by enhanced duplication rate of chondrocytes with the formation of isogenic groups, whose morphology and topography suggested a relationship with the impending formation of the radials calcified column. The morphotype and layout of radial tesserae were related to mechanical demands (stiffening) and the size/mass of the radial cartilage body. The cartilage calcification pattern of the batoids model shares several morphological features with tetrapods' endochondral ossification, that is, (chondrocytes' high duplication rate, alignment in rows, increased volume of chondrocyte lacunae), but without the typical geometry of the metaphyseal growth plates. RESEARCH HIGHLIGHTS: 1. The wing-fins system consists of stiff radials, mobile inter-radial joints and a flat inter-radial membrane adapted to the mechanical demand of wing wave movement. 2. Growth occurs by forming a mixed calcified-uncalcified cartilage texture, developing intrinsic tensional stresses documented by morphoanatomical data.


Assuntos
Rajidae , Animais , Calcificação Fisiológica , Cartilagem/anatomia & histologia , Condrócitos , Minerais , Osteogênese , Rajidae/anatomia & histologia
14.
Microvasc Res ; 82(1): 58-65, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21320513

RESUMO

The intracortical vessel system of the rabbit femur has been studied after perfusion of the vascular tree with a water solution of dye (China ink) with multiplanar analysis. This method utilizes the full depth of field of the microscope objectives focusing different planes of the thick cortex. The microscopic observation even if restricted to a limited volume of cortex allowed to differentiate true 3-D nodes (54.5%) from the superimposition of vessels lying on different planes. The network model with elongated meshes preferentially oriented along the longitudinal axis of the diaphysis in his static configuration is not very different from the vascular anatomy depicted in the 2-D traditional models; however, the semi-quantitative morphometric analysis applied to the former supported the notion of a multidirectional microvascular network allowing change of flow according to the functional requirements. Other peculiar aspects not previously reported were cutting cone loops, blind-end and short-radius-bent vessels, and button-holes figures. The network design and node distribution were consistent with the straight trajectory of the secondary remodeling, with the proximal-to-distal and distal-to-proximal advancement directions of the cutting cones and with two main modes of node formation, namely bifurcation of the cutting cone and interception with pre-existing canals. The general organization of the network and its uninterrupted transformation during bone modeling and remodeling suggested a substantial plasticity of the intracortical vascular system capable to adapt itself to the changeable haemodynamic conditions.


Assuntos
Diáfises/anatomia & histologia , Diáfises/irrigação sanguínea , Fêmur/anatomia & histologia , Fêmur/irrigação sanguínea , Imageamento Tridimensional/métodos , Tinta , Microvasos/anatomia & histologia , Animais , Meios de Contraste/administração & dosagem , Masculino , Coelhos
15.
Cell Tissue Res ; 340(3): 533-40, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20424862

RESUMO

Cortex fractured surface and graded osmic maceration techniques were used to study the secretory activity of osteoblasts, the transformation of osteoblast to osteocytes, and the structural organization of the matrix around the cells with scanning electron microscopy (SEM). A specialized membrane differentiation at the base of the cell was observed with finger-like, flattened processes which formed a diffuse meshwork. These findings suggested that this membrane differentiation below the cells had not only functioned in transporting collagen through the membrane but also in orienting the fibrils once assembled. Thin ramifications arose from the large and flat membrane foldings oriented perpendicular to the plane of the osteoblasts. This meshwork of fine filaments could not be visualized with SEM because they were obscured within the matrix substance. Their 3-D structure, however, should be similar to the canalicular system. The meshwork of large, flattened processes was no more evident in the cells which had completed their transformation into osteocytes.


Assuntos
Forma Celular , Ósteon/citologia , Ósteon/ultraestrutura , Microscopia Eletrônica de Varredura/métodos , Tetróxido de Ósmio/metabolismo , Osteoblastos/citologia , Osteócitos/citologia , Animais , Linhagem Celular Transformada , Masculino , Osteoblastos/ultraestrutura , Osteócitos/ultraestrutura , Coelhos
16.
Microsc Res Tech ; 83(8): 853-864, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32227682

RESUMO

Calcination and decalcification are basic procedures useful to a morphological approach of a biological, composite material like cortical bone. The study was carried out on a whole human femur conserved in liquid (from an educational collection). Cortical fracturing and SEM observation of vascular canals surface collagen texture was used to study bone deproteination at scalar temperatures (400-1,200°C) and acid bone decalcification at crescent time intervals. Heating burned and vaporized the organic matrix with shrinkage of the bone specimens as documented by the weight loss and transverse surface morphometry. SEM showed a pattern of aligned spherulites at 400°C which maintained the collagen fibrils layout (like a mineral cast), followed by a spherulites fusion progression with the temperature increments. At 1200°C a crystalline-like structure of tightly-packed trapezohendron units. XRD analysis supported the SEM morphology displaying the complete Debey rings of hydroxyapatite and spotted Debey rings of withlockite. Surface Ca and P elution was documented after 12 hr of exposition to the acid solution by dissolution of spherulites and the whole canal surface decalcified in depth after 15 days by SEM-EDAX analysis. The periodic pattern of collagen fibrils was still evident up to 15 days of decalcification together with fine granular deposits of a not-collagenic proteic material, while after 30 days no period was observed in the decalcified fibrils. Collagen mineral cast at 400°C calcination. Complete crystalline transformation at 1200°C. Up to 15 days of decalcification fibrils period maintained.


Assuntos
Matriz Óssea/anatomia & histologia , Osso Cortical/ultraestrutura , Fêmur/anatomia & histologia , Fêmur/ultraestrutura , Colágeno/metabolismo , Osso Cortical/irrigação sanguínea , Osso Cortical/fisiologia , Técnica de Descalcificação/métodos , Fêmur/irrigação sanguínea , Temperatura Alta , Humanos , Masculino , Microscopia Eletrônica de Varredura , Minerais/metabolismo
17.
Clin Orthop Relat Res ; 467(9): 2446-56, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19330389

RESUMO

The current model of compact bone is that of a system of longitudinal (Haversian) canals connected by transverse (Volkmann's) canals. Models based on histology or microcomputed tomography lack the morphologic detail and sense of temporal development provided by direct observation. Using direct scanning electron microscopy observation, we studied the bone surface and structure of the intracortical canal system in paired fractured surfaces in rabbit femurs, examining density of canal openings on periosteal and endosteal surfaces, internal network nodes and canal sizes, and collagen lining of the inner canal system. The blood supply of the diaphyseal compact bone entered the cortex through the canal openings on the endosteal and periosteal surfaces, with different morphologic features in the midshaft and distal shaft; their density was higher on endosteal than on periosteal surfaces in the midshaft but with no major differences among subregions. The circumference measurements along Haversian canals documented a steady reduction behind the head of the cutting cone but rather random variations as the distance from the head increased. These observations suggested discontinuous development and variable lamellar apposition rate of osteons in different segments of their trajectory. The frequent branching and types of network nodes suggested substantial osteonal plasticity and supported the model of a network organization. The collagen fibers of the canal wall were organized in intertwined, longitudinally oriented bundles with 0.1- to 0.5-mum holes connecting the canal lumen with the osteocyte canalicular system.


Assuntos
Fêmur/irrigação sanguínea , Fêmur/ultraestrutura , Ósteon/ultraestrutura , Microscopia Eletrônica de Varredura/métodos , Animais , Masculino , Coelhos
18.
Microsc Res Tech ; 82(3): 190-198, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30582248

RESUMO

The patterns of longitudinal and peripheral growth were analyzed in human autopod cartilage anlagen (fetal developmental stage 20th-22nd week) through morphometric assessment of chondrocyte parameter size, shape, alignment and orientation between peripheral and central sectors of the anlage transition zone defined by primary ossification center and the epiphyseal basis. The aim was to correlate the chondrocyte dynamics with the longitudinal and peripheral growth. A further comparison was carried out between the corresponding sectors of the postnatal (3-5 months old) growth plate cartilage documenting: (1) the different chondrocyte framework and the new peripheral mechanism; (2) the opposite direction of fetal periosteal ossification versus the Lacroix bone bark. Measurement of multiple parameters (% lac area, % total matrix area, total lac density and mean single lac area), which characterize the cartilage Anlage growth, suggested the following correlations with chondrocyte duplication rate: (a) slow duplication rate ≈ coupled, intralacunar chondrocytes (in central epiphysis); (b) repeated/frequent cell duplications ≈ clusters (in the basal epiphyseal layer); (c) clusters of chondrocytes before becoming hypertrophic were stacked up on the top of each other (both in the Anlage transition zone or in the columns of metaphyseal growth plate); (d) enhanced osteoclastic resorption of the Lacroix bone bark lower end, extended to the more external metaphyseal trabeculae counterbalancing the discrepancy between the epiphyseal and the diaphyseal circumferential growth.


Assuntos
Desenvolvimento Ósseo/fisiologia , Osso e Ossos/embriologia , Cartilagem/anatomia & histologia , Lâmina de Crescimento/anatomia & histologia , Osteogênese/fisiologia , Feto/anatomia & histologia , Humanos
19.
Anat Rec (Hoboken) ; 301(4): 571-580, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29266881

RESUMO

The progression of mineral phase deposition in hypertrophic cartilage and periosteal bone matrix was studied in human metacarpals primary ossification centers before vascular invasion began. This study aimed to provide a morphologic/morphometric comparative analysis of the calcification process in cartilage and periosteal osteoid used as models of endochondral ossification. Thin, sequential sections from the same paraffin inclusions of metacarpal anlagen (gestational age between the 20th and 22nd weeks) were examined with light microscopy and scanning electron microscopy, either stained or heat-deproteinated. This process enabled the analysis of corresponding fields using the different methods. From the initial CaPO4 nucleation in cartilage matrix, calcification progressed increasing the size of focal, globular, randomly distributed deposits (size range 0.5-5 µm), followed by aggregation into polycyclic clusters and finally forming a dense, compact mass of calcified cartilage. At the same time, the early osteoid calcification was characterized by a fine granular pattern (size range 0.1-0.5 µm), which was soon compacted in the layer of the first periosteal lamella. Scanning electron microscopy of heat-deproteinated sections revealed a rod-like hydroxyapatite crystallite pattern, with only size differences between the early globular deposits of the two calcifying matrices. The morphology of the early calcium deposits was similar in both cartilage and osteoid, with variations in size and density only. However, integration of the reported data with the actual hypotheses of the mechanisms of Ca concentration suggested that ion transport was linked to the progression of the chondrocyte maturation cycle (with recall of H2 O from the matrix) in cartilage, while ions transport was an active process through the cell membrane in osteoid. Other considered factors were the collagen type specificity and the matrix fibrillar texture. Anat Rec, 301:571-580, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Desenvolvimento Ósseo/fisiologia , Matriz Óssea/fisiologia , Calcificação Fisiológica/fisiologia , Cartilagem/fisiologia , Ossos Metacarpais/fisiologia , Periósteo/fisiologia , Humanos , Microscopia Eletrônica de Varredura , Osteogênese/fisiologia
20.
J Morphol ; 278(7): 884-895, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28386944

RESUMO

A histological and morphometric analysis of human metacarpal and carpal anlagen between the 16th and 22nd embryonic weeks was carried out with the aim of studying the establishment of the respective anlage architecture. No differences in the pattern of growth were documented between the peripheral and central zones of the metacarpal epiphyses and those of the carpals. The regulation of longitudinal growth in long bone anlagen occurred in the transition zone between the epiphysis and the diaphysis (homologous to the metaphyseal growth plate cartilage in more advanced developmental stage of the bone). Comparative zonal analysis was conducted to assess the chondrocyte density, the mean chondrocyte lacunar area, the paired chondrocyte polarity in the orthogonal longitudinal and transverse planes, and the lacunar shape transformation in the metacarpal. In transition from epiphysis to diaphysis chondrocyte density decreased and mean lacunar area increased. No significant differences in the chondrocyte maturation cycle were observed between proximal/distal metacarpal epiphyses and the carpal anlagen. The number of paired chondrocyte oriented along the growth vector was significantly higher in both proximal/distal transition zones between epiphysis and diaphysis. Human metacarpals shared with experimental models (like mice and nonmammal tetrapods) an early common chondrocyte maturation cycle but with a different timing due to the slower embryonic and fetal developmental rate of human anlagen.


Assuntos
Ossos do Carpo/embriologia , Cartilagem/embriologia , Feto/anatomia & histologia , Mãos/embriologia , Ossos Metacarpais/embriologia , Diferenciação Celular , Condrócitos/citologia , Condrócitos/ultraestrutura , Diáfises/ultraestrutura , Epífises/ultraestrutura , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA