Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36613897

RESUMO

A previous proteomic study uncovered a relationship between nutritional stress and fluctuations in levels of diadenylate cyclases (DACs) and other proteins that regulate DAC activity, degrade, or interact with c-di-AMP, suggesting a possible role of this second messenger in B. subtilis stress-associated mutagenesis (SAM). Here, we investigated a possible role of c-di-AMP in SAM and growth-associated mutagenesis (GAM). Our results showed that in growing cells of B. subtilis YB955 (hisC952, metB25 and leuC427), the DACs CdaA and DisA, which play crucial roles in cell wall homeostasis and chromosomal fidelity, respectively, counteracted spontaneous and Mitomycin-C-induced mutagenesis. However, experiments in which hydrogen peroxide was used to induce mutations showed that single deficiencies in DACs caused opposite effects compared to each other. In contrast, in the stationary-phase, DACs promoted mutations in conditions of nutritional stress. These results tracked with intracellular levels of c-di-AMP, which are significantly lower in cdaA- and disA-deficient strains. The restoration of DAC-deficient strains with single functional copies of the cdaA and/or disA returned SAM and GAM levels to those observed in the parental strain. Taken together, these results reveal a role for c-di-AMP in promoting genetic diversity in growth-limiting conditions in B. subtilis. Finally, we postulate that this novel function of c-di-AMP can be exerted through proteins that possess binding domains for this second messenger and play roles in DNA repair, ion transport, transcriptional regulation, as well as oxidative stress protection.


Assuntos
Bacillus subtilis , Fósforo-Oxigênio Liases , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Mutagênese , Fósforo-Oxigênio Liases/metabolismo , Proteômica
2.
J Bacteriol ; 202(9)2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32041798

RESUMO

We report that the absence of an oxidized guanine (GO) system or the apurinic/apyrimidinic (AP) endonucleases Nfo, ExoA, and Nth promoted stress-associated mutagenesis (SAM) in Bacillus subtilis YB955 (hisC952 metB5 leuC427). Moreover, MutY-promoted SAM was Mfd dependent, suggesting that transcriptional transactions over nonbulky DNA lesions promoted error-prone repair. Here, we inquired whether Mfd and GreA, which control transcription-coupled repair and transcription fidelity, influence the mutagenic events occurring in nutritionally stressed B. subtilis YB955 cells deficient in the GO or AP endonuclease repair proteins. To this end, mfd and greA were disabled in genetic backgrounds defective in the GO and AP endonuclease repair proteins, and the strains were tested for growth-associated and stress-associated mutagenesis. The results revealed that disruption of mfd or greA abrogated the production of stress-associated amino acid revertants in the GO and nfo exoA nth strains, respectively. These results suggest that in nutritionally stressed B. subtilis cells, spontaneous nonbulky DNA lesions are processed in an error-prone manner with the participation of Mfd and GreA. In support of this notion, stationary-phase ΔytkD ΔmutM ΔmutY (referred to here as ΔGO) and Δnfo ΔexoA Δnth (referred to here as ΔAP) cells accumulated 8-oxoguanine (8-OxoG) lesions, which increased significantly following Mfd disruption. In contrast, during exponential growth, disruption of mfd or greA increased the production of His+, Met+, or Leu+ prototrophs in both DNA repair-deficient strains. Thus, in addition to unveiling a role for GreA in mutagenesis, our results suggest that Mfd and GreA promote or prevent mutagenic events driven by spontaneous genetic lesions during the life cycle of B. subtilisIMPORTANCE In this paper, we report that spontaneous genetic lesions of an oxidative nature in growing and nutritionally stressed B. subtilis strain YB955 (hisC952 metB5 leuC427) cells drive Mfd- and GreA-dependent repair transactions. However, whereas Mfd and GreA elicit faithful repair events during growth to maintain genome fidelity, under starving conditions, both factors promote error-prone repair to produce genetic diversity, allowing B. subtilis to escape from growth-limiting conditions.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Reparo do DNA , Fatores de Transcrição/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Dano ao DNA , Regulação Bacteriana da Expressão Gênica , Mutagênese , Mutação , Fatores de Transcrição/genética
3.
Appl Environ Microbiol ; 86(20)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32801174

RESUMO

Cr(VI) is mutagenic and teratogenic and considered an environmental pollutant of increasing concern. The use of microbial enzymes that convert this ion into its less toxic reduced insoluble form, Cr(III), represents a valuable bioremediation strategy. In this study, we examined the Bacillus subtilis YhdA enzyme, which belongs to the family of NADPH-dependent flavin mononucleotide oxide reductases and possesses azo-reductase activity as a factor that upon overexpression confers protection on B. subtilis from the cytotoxic effects promoted by Cr(VI) and counteracts the mutagenic effects of the reactive oxygen species (ROS)-promoted lesion 8-OxoG. Further, our in vitro assays unveiled catalytic and biochemical properties of biotechnological relevance in YhdA; a pure recombinant His10-YhdA protein efficiently catalyzed the reduction of Cr(VI) employing NADPH as a cofactor. The activity of the pure oxidoreductase YhdA was optimal at 30°C and at pH 7.5 and displayed Km and Vmax values of 7.26 mM and 26.8 µmol·min-1·mg-1 for Cr(VI), respectively. Therefore, YhdA can be used for efficient bioremediation of Cr(VI) and counteracts the cytotoxic and genotoxic effects of oxygen radicals induced by intracellular factors and those generated during reduction of hexavalent chromium.IMPORTANCE Here, we report that the bacterial flavin mononucleotide/NADPH-dependent oxidoreductase YhdA, widely distributed among Gram-positive bacilli, conferred protection to cells from the cytotoxic effects of Cr(VI) and prevented the hypermutagenesis exhibited by a MutT/MutM/MutY-deficient strain. Additionally, a purified recombinant His10-YhdA protein displayed a strong NADPH-dependent chromate reductase activity. Therefore, we postulate that in bacterial cells, YhdA counteracts the cytotoxic and genotoxic effects of intracellular and extracellular inducers of oxygen radicals, including those caused by hexavalent chromium.


Assuntos
Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Cromo/toxicidade , FMN Redutase/metabolismo , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/química , FMN Redutase/química
4.
J Bacteriol ; 201(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30745368

RESUMO

Bacteria deploy global programs of gene expression, including components of the SOS response, to counteract the cytotoxic and genotoxic effects of environmental DNA-damaging factors. Here we report that genetic damage promoted by hexavalent chromium elicited the SOS response in Bacillus subtilis, as evidenced by the induction of transcriptional uvrA-lacZ, recA-lacZ, and P recA-gfp fusions. Accordingly, B. subtilis strains deficient in homologous recombination (RecA) and nucleotide excision repair (NER) (UvrA), components of the SOS response, were significantly more sensitive to Cr(VI) treatment than were cells of the wild-type strain. These results strongly suggest that Cr(VI) induces the formation in growing B. subtilis cells of cytotoxic and genotoxic bulky DNA lesions that are processed by RecA and/or the NER pathways. In agreement with this notion, Cr(VI) significantly increased the formation of DNA-protein cross-links (DPCs) and induced mutagenesis in recA- and uvrA-deficient B. subtilis strains, through a pathway that required YqjH/YqjW-mediated translesion synthesis. We conclude that Cr(VI) promotes mutagenesis and cell death in B. subtilis by a mechanism that involves the formation of DPCs and that such deleterious effects are counteracted by both the NER and homologous recombination pathways, belonging to the RecA-dependent SOS system.IMPORTANCE It has been shown that, following permeation of cell barriers, Cr(VI) kills B. subtilis cells following a mechanism of reactive oxygen species-promoted DNA damage, which is counteracted by the guanine oxidized repair system. Here we report a distinct mechanism of Cr(VI)-promoted DNA damage that involves production of DPCs capable of eliciting the bacterial SOS response. We also report that the NER and homologous recombination (RecA) repair pathways, as well as low-fidelity DNA polymerases, counteract this metal-induced mechanism of killing in B. subtilis Hence, our results contribute to an understanding of how environmental pollutants activate global programs of gene expression that allow bacteria to contend with the cytotoxic and genotoxic effects of heavy metals.


Assuntos
Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/enzimologia , Cromo/toxicidade , Dano ao DNA/efeitos dos fármacos , Reparo do DNA , Mutagênicos/toxicidade , Recombinases Rec A/metabolismo , Bacillus subtilis/metabolismo , Resposta SOS em Genética
5.
BMC Microbiol ; 19(1): 26, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30691388

RESUMO

BACKGROUND: Previous reports showed that mutagenesis in nutrient-limiting conditions is dependent on Mfd in Bacillus subtilis. Mfd initiates one type of transcription-coupled repair (TCR); this type of repair is known to target bulky lesions, like those associated with UV exposure. Interestingly, the roles of Mfd in repair of oxidative-promoted DNA damage and regulation of transcription differ. Here, we used a genetic approach to test whether Mfd protected B. subtilis from exposure to two different oxidants. RESULTS: Wild-type cells survived tert-butyl hydroperoxide (t-BHP) exposure significantly better than Mfd-deficient cells. This protective effect was independent of UvrA, a component of the canonical TCR/nucleotide excision repair (NER) pathway. Further, our results suggest that Mfd and MutY, a DNA glycosylase that processes 8-oxoG DNA mismatches, work together to protect cells from lesions generated by oxidative damage. We also tested the role of Mfd in mutagenesis in starved cells exposed to t-BHP. In conditions of oxidative stress, Mfd and MutY may work together in the formation of mutations. Unexpectedly, Mfd increased survival when cells were exposed to the protein oxidant diamide. Under this type of oxidative stress, cells survival was not affected by MutY or UvrA. CONCLUSIONS: These results are significant because they show that Mfd mediates error-prone repair of DNA and protects cells against oxidation of proteins by affecting gene expression; Mfd deficiency resulted in increased gene expression of the OhrR repressor which controls the cellular response to organic peroxide exposure. These observations point to Mfd functioning beyond a DNA repair factor in cells experiencing oxidative stress.


Assuntos
Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Reparo do DNA , Oxidantes/farmacologia , Estresse Oxidativo , Fatores de Transcrição/genética , DNA Glicosilases/genética , Diamida/farmacologia , Mutação , Transcrição Gênica , terc-Butil Hidroperóxido/farmacologia
6.
J Exp Biol ; 222(Pt 5)2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30718372

RESUMO

In invertebrates, it has recently been reported that secondary sexual characteristics (SSCs) reflect the antioxidant defense of their bearers, but it is not known what physiological link maintains the honesty of those signals. Here, we used the damselfly Hetaerina americana to test whether juvenile hormone plays such a role. First, we analyzed whether oxidative damage is a real threat in natural damselfly populations by examining the accumulation of oxidized guanines as a function of age in males. Then, we injected paraquat (a pro-oxidant agent) and added the juvenile hormone analog methoprene (JHa) to the experimental group and the JHa vehicle (acetone) to the control group, to determine whether JHa increases the levels of pro-oxidants and antioxidants. We found that DNA oxidation increased with age, and that levels of hydrogen peroxide and superoxide dismutase, but not catalase or glutathione, were elevated in the JHa group compared with the control group. We propose that juvenile hormone is a mediator of the relationship between SSCs and antioxidant capacity and, based on the literature, we know that JHa suppresses the immune response. We therefore suggest that juvenile hormone is a molecular mediator of the general health of males, which is reflected in their SSCs.


Assuntos
Hormônios Juvenis/farmacologia , Metoprene/farmacologia , Odonatos/fisiologia , Oxidantes/farmacologia , Estresse Oxidativo , Paraquat/farmacologia , Fatores Etários , Animais , Antioxidantes/metabolismo , DNA/metabolismo , Masculino , Metoprene/administração & dosagem , Oxidantes/administração & dosagem , Paraquat/administração & dosagem
7.
Curr Genet ; 64(1): 215-222, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28624879

RESUMO

The non-appropriate conditions faced by nutritionally stressed bacteria propitiate error-prone repair events underlying stationary-phase- or stress-associated mutagenesis (SPM). The genetic and molecular mechanisms involved in SPM have been deeply studied but the biochemical aspects of this process have so far been less explored. Previous evidence showed that under conditions of nutritional stress, non-dividing cells of strain B. subtilis YB955 overexpressing ribonucleotide reductase (RNR) exhibited a strong propensity to generate true reversions in the hisC952 (amber), metB5 (ochre) and leuC425 (missense) mutant alleles. To further advance our knowledge on the metabolic conditions underlying this hypermutagenic phenotype, a high-throughput LC-MS/MS proteomic analysis was performed in non-dividing cells of an amino acid-starved strain, deficient for NrdR, the RNR repressor. Compared with the parental strain, the level of 57 proteins was found to increase and of 80 decreases in the NrdR-deficient strain. The proteomic analysis revealed an altered content in proteins associated with the stringent response, nucleotide metabolism, DNA repair, and cell signaling in amino acid-starved cells of the ∆nrdR strain. Overall, our results revealed that amino acid-starved cells of strain B. subtilis ∆nrdR that escape from growth-limiting conditions exhibit a complex proteomic pattern reminiscent of a disturbed metabolism. Future experiments aimed to understand the consequences of disrupting the cell signaling pathways unveiled in this study, will advance our knowledge on the genetic adaptations deployed by bacteria to escape from growth-limiting environments.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Proteoma , Proteômica , Ribonucleotídeo Redutases/genética , Aminoácidos/metabolismo , Cromatografia Líquida , Mutagênese , Nucleotídeos/metabolismo , Proteômica/métodos , Estabilidade de RNA , Estresse Fisiológico , Espectrometria de Massas em Tandem
8.
J Bacteriol ; 199(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27920297

RESUMO

The Gram-positive microorganism Bacillus subtilis relies on a single class Ib ribonucleotide reductase (RNR) to generate 2'-deoxyribonucleotides (dNDPs) for DNA replication and repair. In this work, we investigated the influence of RNR levels on B. subtilis stationary-phase-associated mutagenesis (SPM). Since RNR is essential in this bacterium, we engineered a conditional mutant of strain B. subtilis YB955 (hisC952 metB5 leu427) in which expression of the nrdEF operon was modulated by isopropyl-ß-d-thiogalactopyranoside (IPTG). Moreover, genetic inactivation of ytcG, predicted to encode a repressor (NrdR) of nrdEF in this strain, dramatically increased the expression levels of a transcriptional nrdE-lacZ fusion. The frequencies of mutations conferring amino acid prototrophy in three genes were measured in cultures under conditions that repressed or induced RNR-encoding genes. The results revealed that RNR was necessary for SPM and overexpression of nrdEF promoted growth-dependent mutagenesis and SPM. We also found that nrdEF expression was induced by H2O2 and such induction was dependent on the master regulator PerR. These observations strongly suggest that the metabolic conditions operating in starved B. subtilis cells increase the levels of RNR, which have a direct impact on SPM. IMPORTANCE: Results presented in this study support the concept that the adverse metabolic conditions prevailing in nutritionally stressed bacteria activate an oxidative stress response that disturbs ribonucleotide reductase (RNR) levels. Such an alteration of RNR levels promotes mutagenic events that allow Bacillus subtilis to escape from growth-limited conditions.


Assuntos
Bacillus subtilis/enzimologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Estresse Oxidativo/fisiologia , Ribonucleotídeo Redutases/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutagênese , Mutação , Ribonucleotídeo Redutases/genética
9.
J Bacteriol ; 198(24): 3345-3354, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27698084

RESUMO

Aag from Bacillus subtilis has been implicated in in vitro removal of hypoxanthine and alkylated bases from DNA. The regulation of expression of aag in B. subtilis and the resistance to genotoxic agents and mutagenic properties of an Aag-deficient strain were studied here. A strain with a transcriptional aag-lacZ fusion expressed low levels of ß-galactosidase during growth and early sporulation but exhibited increased transcription during late stages of this developmental process. Notably, aag-lacZ expression was higher inside the forespore than in the mother cell compartment, and this expression was abolished in a sigG-deficient background, suggesting a forespore-specific mechanism of aag transcription. Two additional findings supported this suggestion: (i) expression of an aag-yfp fusion was observed in the forespore, and (ii) in vivo mapping of the aag transcription start site revealed the existence of upstream regulatory sequences possessing homology to σG-dependent promoters. In comparison with the wild-type strain, disruption of aag significantly reduced survival of sporulating B. subtilis cells following nitrous acid or methyl methanesulfonate treatments, and the Rifr mutation frequency was significantly increased in an aag strain. These results suggest that Aag protects the genome of developing B. subtilis sporangia from the cytotoxic and genotoxic effects of base deamination and alkylation. IMPORTANCE: In this study, evidence is presented revealing that aag, encoding a DNA glycosylase implicated in processing of hypoxanthine and alkylated DNA bases, exhibits a forespore-specific pattern of gene expression during B. subtilis sporulation. Consistent with this spatiotemporal mode of expression, Aag was found to protect the sporulating cells of this microorganism from the noxious and mutagenic effects of base deamination and alkylation.


Assuntos
Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , DNA Glicosilases/metabolismo , DNA Bacteriano/metabolismo , Hipoxantina/toxicidade , Mutagênicos/toxicidade , Esporos Bacterianos/crescimento & desenvolvimento , Alquilação , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , DNA Glicosilases/genética , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regiões Promotoras Genéticas , Fator sigma/genética , Fator sigma/metabolismo , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/enzimologia , Esporos Bacterianos/genética
10.
Curr Microbiol ; 73(5): 721-726, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27530626

RESUMO

Compelling evidence points to transcriptional processes as important factors contributing to stationary-phase associated mutagenesis. However, it has not been documented whether or not base excision repair mechanisms play a role in modulating mutagenesis under conditions of transcriptional derepression. Here, we report on a flow cytometry-based methodology that employs a fluorescent reporter system to measure at single-cell level, the occurrence of transcription-associated mutations in nutritionally stressed B. subtilis cultures. Using this approach, we demonstrate that (i) high levels of transcription correlates with augmented mutation frequency, and (ii) mutation frequency is enhanced in nongrowing population cells deficient for deaminated (Ung, YwqL) and oxidized guanine (GO) excision repair, strongly suggesting that accumulation of spontaneous DNA lesions enhance transcription-associated mutagenesis.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/genética , Reparo do DNA , Transcrição Gênica , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citometria de Fluxo , Mutagênese
11.
J Bacteriol ; 197(11): 1963-71, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25825434

RESUMO

UNLABELLED: Reactive oxygen species (ROS) promote the synthesis of the DNA lesion 8-oxo-G, whose mutagenic effects are counteracted in distinct organisms by the DNA glycosylase MutM. We report here that in Bacillus subtilis, mutM is expressed during the exponential and stationary phases of growth. In agreement with this expression pattern, results of a Western blot analysis confirmed the presence of MutM in both stages of growth. In comparison with cells of a wild-type strain, cells of B. subtilis lacking MutM increased their spontaneous mutation frequency to Rif(r) and were more sensitive to the ROS promoter agents hydrogen peroxide and 1,1'-dimethyl-4,4'-bipyridinium dichloride (Paraquat). However, despite MutM's proven participation in preventing ROS-induced-DNA damage, the expression of mutM was not induced by hydrogen peroxide, mitomycin C, or NaCl, suggesting that transcription of this gene is not under the control of the RecA, PerR, or σ(B) regulons. Finally, the role of MutM in stationary-phase-associated mutagenesis (SPM) was investigated in the strain B. subtilis YB955 (hisC952 metB5 leuC427). Results revealed that under limiting growth conditions, a mutM knockout strain significantly increased the amount of stationary-phase-associated his, met, and leu revertants produced. In summary, our results support the notion that the absence of MutM promotes mutagenesis that allows nutritionally stressed B. subtilis cells to escape from growth-limiting conditions. IMPORTANCE: The present study describes the role played by a DNA repair protein (MutM) in protecting the soil bacterium Bacillus subtilis from the genotoxic effects induced by reactive oxygen species (ROS) promoter agents. Moreover, it reveals that the genetic inactivation of mutM allows nutritionally stressed bacteria to escape from growth-limiting conditions, putatively by a mechanism that involves the accumulation and error-prone processing of oxidized DNA bases.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Dano ao DNA , DNA Glicosilases/metabolismo , Mutagênese , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/fisiologia , Proteínas de Bactérias/genética , DNA Glicosilases/genética , Regulação Bacteriana da Expressão Gênica , Estresse Oxidativo , Estresse Fisiológico
12.
J Bacteriol ; 196(3): 568-78, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24244006

RESUMO

Oxidative stress-induced damage, including 8-oxo-guanine and apurinic/apyrimidinic (AP) DNA lesions, were detected in dormant and outgrowing Bacillus subtilis spores lacking the AP endonucleases Nfo and ExoA. Spores of the Δnfo exoA strain exhibited slightly slowed germination and greatly slowed outgrowth that drastically slowed the spores' return to vegetative growth. A null mutation in the disA gene, encoding a DNA integrity scanning protein (DisA), suppressed this phenotype, as spores lacking Nfo, ExoA, and DisA exhibited germination and outgrowth kinetics very similar to those of wild-type spores. Overexpression of DisA also restored the slow germination and outgrowth phenotype to nfo exoA disA spores. A disA-lacZ fusion was expressed during sporulation but not in the forespore compartment. However, disA-lacZ was expressed during spore germination/outgrowth, as was a DisA-green fluorescent protein (GFP) fusion protein. Fluorescence microscopy revealed that, as previously shown in sporulating cells, DisA-GFP formed discrete globular foci that colocalized with the nucleoid of germinating and outgrowing spores and remained located primarily in a single cell during early vegetative growth. Finally, the slow-outgrowth phenotype of nfo exoA spores was accompanied by a delay in DNA synthesis to repair AP and 8-oxo-guanine lesions, and these effects were suppressed following disA disruption. We postulate that a DisA-dependent checkpoint arrests DNA replication during B. subtilis spore outgrowth until the germinating spore's genome is free of damage.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Dano ao DNA/fisiologia , DNA Bacteriano/metabolismo , Endonucleases/classificação , Endonucleases/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Endonucleases/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Estresse Oxidativo , Esporos Bacterianos/fisiologia
13.
J Bacteriol ; 196(16): 3012-22, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24914186

RESUMO

In growing cells, apurinic/apyrimidinic (AP) sites generated spontaneously or resulting from the enzymatic elimination of oxidized bases must be processed by AP endonucleases before they compromise cell integrity. Here, we investigated how AP sites and the processing of these noncoding lesions by the AP endonucleases Nfo, ExoA, and Nth contribute to the production of mutations (hisC952, metB5, and leuC427) in starved cells of the Bacillus subtilis YB955 strain. Interestingly, cells from this strain that were deficient for Nfo, ExoA, and Nth accumulated a greater amount of AP sites in the stationary phase than during exponential growth. Moreover, under growth-limiting conditions, the triple nfo exoA nth knockout strain significantly increased the amounts of adaptive his, met, and leu revertants produced by the B. subtilis YB955 parental strain. Of note, the number of stationary-phase-associated reversions in the his, met, and leu alleles produced by the nfo exoA nth strain was significantly decreased following disruption of polX. In contrast, during growth, the reversion rates in the three alleles tested were significantly increased in cells of the nfo exoA nth knockout strain deficient for polymerase X (PolX). Therefore, we postulate that adaptive mutations in B. subtilis can be generated through a novel mechanism mediated by error-prone processing of AP sites accumulated in the stationary phase by the PolX DNA polymerase.


Assuntos
Adaptação Biológica , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/genética , Dano ao DNA , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Mutação
14.
Mol Microbiol ; 90(5): 1088-99, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24118570

RESUMO

In conditions of halted or limited genome replication, like those experienced in sporulating cells of Bacillus subtilis, a more immediate detriment caused by DNA damage is altering the transcriptional programme that drives this developmental process. Here, we report that mfd, which encodes a conserved bacterial protein that mediates transcription-coupled DNA repair (TCR), is expressed together with uvrA in both compartments of B. subtilis sporangia. The function of Mfd was found to be important for processing the genetic damage during B. subtilis sporulation. Disruption of mfd sensitized developing spores to mitomycin-C (M-C) treatment and UV-C irradiation. Interestingly, in non-growing sporulating cells, Mfd played an anti-mutagenic role as its absence promoted UV-induced mutagenesis through a pathway involving YqjH/YqjW-mediated translesion synthesis (TLS). Two observations supported the participation of Mfd-dependent TCR in spore morphogenesis: (i) disruption of mfd notoriously affected the efficiency of B. subtilis sporulation and (ii) in comparison with the wild-type strain, a significant proportion of Mfd-deficient sporangia that survived UV-C treatment developed an asporogenous phenotype. We propose that the Mfd-dependent repair pathway operates during B. subtilis sporulation and that its function is required to eliminate genetic damage from transcriptionally active genes.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Reparo do DNA , Fatores de Transcrição/metabolismo , Bacillus subtilis/efeitos da radiação , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Mitomicina/farmacologia , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Esporângios/genética , Esporângios/metabolismo , Esporângios/efeitos da radiação , Esporos Bacterianos/genética , Esporos Bacterianos/fisiologia , Esporos Bacterianos/efeitos da radiação , Fatores de Transcrição/genética , Transcrição Gênica
15.
Appl Environ Microbiol ; 80(17): 5493-502, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24973075

RESUMO

Chromium pollution is potentially detrimental to bacterial soil communities, compromising carbon and nitrogen cycles that are essential for life on earth. It has been proposed that intracellular reduction of hexavalent chromium [Cr(VI)] to trivalent chromium [Cr(III)] may cause bacterial death by a mechanism that involves reactive oxygen species (ROS)-induced DNA damage; the molecular basis of the phenomenon was investigated in this work. Here, we report that Bacillus subtilis cells lacking a functional error prevention oxidized guanine (GO) system were significantly more sensitive to Cr(VI) treatment than cells of the wild-type (WT) strain, suggesting that oxidative damage to DNA is involved in the deleterious effects of the oxyanion. In agreement with this suggestion, Cr(VI) dramatically increased the ROS concentration and induced mutagenesis in a GO-deficient B. subtilis strain. Alkaline gel electrophoresis (AGE) analysis of chromosomal DNA of WT and ΔGO mutant strains subjected to Cr(VI) treatment revealed that the DNA of the ΔGO strain was more susceptible to DNA glycosylase Fpg attack, suggesting that chromium genotoxicity is associated with 7,8-dihydro-8-oxodeoxyguanosine (8-oxo-G) lesions. In support of this notion, specific monoclonal antibodies detected the accumulation of 8-oxo-G lesions in the chromosomes of B. subtilis cells subjected to Cr(VI) treatment. We conclude that Cr(VI) promotes mutagenesis and cell death in B. subtilis by a mechanism that involves radical oxygen attack of DNA, generating 8-oxo-G, and that such effects are counteracted by the prevention and repair GO system.


Assuntos
Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/metabolismo , Cromo/toxicidade , Dano ao DNA/efeitos dos fármacos , DNA/efeitos dos fármacos , Guanina/metabolismo , Espécies Reativas de Oxigênio/toxicidade , Bacillus subtilis/fisiologia , Cromo/metabolismo , DNA/metabolismo , Redes e Vias Metabólicas , Viabilidade Microbiana/efeitos dos fármacos , Mutagênicos/metabolismo , Mutagênicos/toxicidade , Mutação , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico
16.
Antioxidants (Basel) ; 13(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38539865

RESUMO

The guanine oxidized (GO) system of Bacillus subtilis, composed of the YtkD (MutT), MutM and MutY proteins, counteracts the cytotoxic and genotoxic effects of the oxidized nucleobase 8-OxoG. Here, we report that in growing B. subtilis cells, the genetic inactivation of GO system potentiated mutagenesis (HPM), and subsequent hyperresistance, contributes to the damaging effects of hydrogen peroxide (H2O2) (HPHR). The mechanism(s) that connect the accumulation of the mutagenic lesion 8-OxoG with the ability of B. subtilis to evolve and survive the noxious effects of oxidative stress were dissected. Genetic and biochemical evidence indicated that the synthesis of KatA was exacerbated, in a PerR-independent manner, and the transcriptional coupling repair factor, Mfd, contributed to HPHR and HPM of the ΔGO strain. Moreover, these phenotypes are associated with wider pleiotropic effects, as revealed by a global proteome analysis. The inactivation of the GO system results in the upregulated production of KatA, and it reprograms the synthesis of the proteins involved in distinct types of cellular stress; this has a direct impact on (i) cysteine catabolism, (ii) the synthesis of iron-sulfur clusters, (iii) the reorganization of cell wall architecture, (iv) the activation of AhpC/AhpF-independent organic peroxide resistance, and (v) increased resistance to transcription-acting antibiotics. Therefore, to contend with the cytotoxic and genotoxic effects derived from the accumulation of 8-OxoG, B. subtilis activates the synthesis of proteins belonging to transcriptional regulons that respond to a wide, diverse range of cell stressors.

17.
Microbiol Mol Biol Rev ; 88(2): e0015823, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38551349

RESUMO

SUMMARYThe metabolic conditions that prevail during bacterial growth have evolved with the faithful operation of repair systems that recognize and eliminate DNA lesions caused by intracellular and exogenous agents. This idea is supported by the low rate of spontaneous mutations (10-9) that occur in replicating cells, maintaining genome integrity. In contrast, when growth and/or replication cease, bacteria frequently process DNA lesions in an error-prone manner. DNA repairs provide cells with the tools needed for maintaining homeostasis during stressful conditions and depend on the developmental context in which repair events occur. Thus, different physiological scenarios can be anticipated. In nutritionally stressed bacteria, different components of the base excision repair pathway may process damaged DNA in an error-prone approach, promoting genetic variability. Interestingly, suppressing the mismatch repair machinery and activating specific DNA glycosylases promote stationary-phase mutations. Current evidence also suggests that in resting cells, coupling repair processes to actively transcribed genes may promote multiple genetic transactions that are advantageous for stressed cells. DNA repair during sporulation is of interest as a model to understand how transcriptional processes influence the formation of mutations in conditions where replication is halted. Current reports indicate that transcriptional coupling repair-dependent and -independent processes operate in differentiating cells to process spontaneous and induced DNA damage and that error-prone synthesis of DNA is involved in these events. These and other noncanonical ways of DNA repair that contribute to mutagenesis, survival, and evolution are reviewed in this manuscript.


Assuntos
Bacillus subtilis , Reparo do DNA , Mutagênese , Reparo do DNA/genética , Bacillus subtilis/genética , Bacillus subtilis/fisiologia , Estresse Fisiológico/genética , Dano ao DNA , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Replicação do DNA , DNA Bacteriano/genética , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento
18.
Ann Hum Biol ; 40(4): 355-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23590225

RESUMO

BACKGROUND: Oxidative stress has been associated with several complex diseases. Effects generated as a result of oxidative stress may be modulated by various genes. Variation in these genes, particularly when located within coding or regulating regions, may be the primary cause of this modulation. The aim of this work was to determine the allelic and genotypic frequencies of CAT C-262T, SOD3 Ala58Thr, APEX1 Asp148Glu, XPD Lys751Gln and XRCC3 Thr241Met genetic markers in a northern Mexican population. SUBJECTS AND METHODS: This study analysed 250 unrelated individuals by RT-PCR. RESULTS: A high allele mutant frequency was found in SOD3 Ala58Thr and APEX1 Asp148Glu genetic markers (0.395 and 0.38, respectively). A correspondence analysis showed that northern Mexicans are close to European populations. A linkage disequilibrium test between XPD Lys751Gln and CAT C-262T and XPD Lys751Gln and SOD3 Ala58Thr genetic markers was significant (p = 0.000). CONCLUSION: The genetic markers described in this work will be a valuable resource for future functional studies in the northern Mexican population to explore comprehensively their role in the aetiology of human diseases. Furthermore, it will be necessary to replicate these studies in other regions of Mexico due to differences between Mexican sub-populations.


Assuntos
Reparo do DNA , Frequência do Gene , Estresse Oxidativo , Polimorfismo de Nucleotídeo Único , Feminino , Marcadores Genéticos , Humanos , Masculino , México , Reação em Cadeia da Polimerase em Tempo Real
19.
Microbiol Spectr ; 11(4): e0043223, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37284752

RESUMO

A green fluorescent protein (GFP)-based whole-cell biosensor (WCB-GFP) for monitoring arsenic (As) was developed in Bacillus subtilis. To this end, we designed a reporter gene fusion carrying the gfpmut3a gene under the control of the promoter/operator region of the arsenic operon (Pars::gfpmut3a) in the extrachromosomal plasmid pAD123. This construct was transformed into B. subtilis 168, and the resultant strain was used as a whole-cell biosensor (BsWCB-GFP) for the detection of As. The BsWCB-GFP was specifically activated by inorganic As(III) and As(V), but not by dimethylarsinic acid [DMA(V)], and exhibited high tolerance to the noxious effects of arsenic. Accordingly, after 12 h exposure, B. subtilis cells carrying the Pars::gfpmut3a fusion exhibited 50 and 90% lethal doses (LD50 and LD90) to As(III) of 0.89 mM and As 1.71 mM, respectively. Notably, dormant spores from the BsWCB-GFP were able to report the presence of As(III) in a concentration range from 0.1 to 1,000 µM 4 h after the onset of germination. In summary, the specificity and high sensitivity for As, as well as its ability to proliferate under concentrations of the metal that are considered toxic in water and soil, makes the B. subtilis biosensor developed here a potentially important tool for monitoring environmental samples contaminated with this pollutant. IMPORTANCE Arsenic (As) contamination of groundwater is associated with serious worldwide health risks. Detection of this pollutant at concentrations that are established as permissible for water consumption by WHO is a matter of significant interest. Here, we report the generation of a whole-cell biosensor for As detection in the Gram-positive spore former B. subtilis. This biosensor reports the presence of inorganic As, activating the expression of the green fluorescent protein (GFP) under the control of the promoter/operator of the ars operon. The biosensor can proliferate under concentrations of As(III) that are considered toxic in water and soil and detect this ion at concentrations as low as 0.1 µM. Of note, spores of the Pars-GFP biosensor exhibited the ability to detect As(III) following germination and outgrowth. Therefore, this novel tool has the potential to be directly applied to monitor As contamination in environmental samples.


Assuntos
Arsênio , Técnicas Biossensoriais , Poluentes Ambientais , Bacillus subtilis/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Arsênio/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/química , Água/metabolismo , Poluentes Ambientais/metabolismo
20.
J Bacteriol ; 194(2): 243-52, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22056936

RESUMO

The disruption of ung, the unique uracil-DNA-glycosylase-encoding gene in Bacillus subtilis, slightly increased the spontaneous mutation frequency to rifampin resistance (Rif(r)), suggesting that additional repair pathways counteract the mutagenic effects of uracil in this microorganism. An alternative excision repair pathway is involved in this process, as the loss of YwqL, a putative endonuclease V homolog, significantly increased the mutation frequency of the ung null mutant, suggesting that Ung and YwqL both reduce the mutagenic effects of base deamination. Consistent with this notion, sodium bisulfite (SB) increased the Rif(r) mutation frequency of the single ung and double ung ywqL strains, and the absence of Ung and/or YwqL decreased the ability of B. subtilis to eliminate uracil from DNA. Interestingly, the Rif(r) mutation frequency of single ung and mutSL (mismatch repair [MMR] system) mutants was dramatically increased in a ung knockout strain that was also deficient in MutSL, suggesting that the MMR pathway also counteracts the mutagenic effects of uracil. Since the mutation frequency of the ung mutSL strain was significantly increased by SB, in addition to Ung, the mutagenic effects promoted by base deamination in growing B. subtilis cells are prevented not only by YwqL but also by MMR. Importantly, in nondividing cells of B. subtilis, the accumulations of mutations in three chromosomal alleles were significantly diminished following the disruption of ung and ywqL. Thus, under conditions of nutritional stress, the processing of deaminated bases in B. subtilis may normally occur in an error-prone manner to promote adaptive mutagenesis.


Assuntos
Bacillus subtilis/metabolismo , Reparo de Erro de Pareamento de DNA/fisiologia , DNA Bacteriano/metabolismo , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Uracila-DNA Glicosidase/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Desaminação , Desoxirribonuclease (Dímero de Pirimidina)/genética , Mutagênese , Mutação , Uracila/metabolismo , Uracila-DNA Glicosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA