Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(13): 5705-5715, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38460143

RESUMO

Extensive rare earth element (REE) mining activities have caused REE contamination of ambient agricultural soils, posing threats to associated food webs. Here, a simulated lettuce-snail food chain was conducted to evaluate the trophic transfer characteristics and the consequent effects of REEs on consumers. After 50-day exposure to soil, lettuce roots dose-dependently accumulated 9.4-76 mg kg-1 REEs and translocated 3.7-20 mg kg-1 REEs to shoots. Snails feeding on REE-contaminated shoots accumulated 3.0-6.7 mg kg-1 REEs with trophic transfer factors of 0.20-0.98, indicating trophic dilution in the lettuce-snail system. REE profiles in lettuce and snails indicated light REE (LREE) enrichment only in snails and the varied REE profiles along the food chain. This was corroborated by toxicokinetics. Estimated uptake (Ku) and elimination (Ke) parameters were 0.010-2.9 kgshoot kgsnail-1 day-1 and 0.010-1.8 day-1, respectively, with higher Ku values for LREE and HREE. The relatively high Ke, compared to Ku, indicating a fast REE elimination, supports the trophic dilution. Dietary exposure to REEs dose-dependently affected gut microbiota and metabolites in snails. These effects are mainly related to oxidative damage and energy expenditure, which are further substantiated by targeted analysis. Our study provides essential information about REE bioaccumulation characteristics and its associated risks to terrestrial food chains near REE mining areas.


Assuntos
Cadeia Alimentar , Metais Terras Raras , Herbivoria , Plantas , Solo , Lactuca
2.
Regul Toxicol Pharmacol ; 148: 105589, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38403009

RESUMO

Risk assessment of chemicals is a time-consuming process and needs to be optimized to ensure all chemicals are timely evaluated and regulated. This transition could be stimulated by valuable applications of in silico Artificial Intelligence (AI)/Machine Learning (ML) models. However, implementation of AI/ML models in risk assessment is lagging behind. Most AI/ML models are considered 'black boxes' that lack mechanistical explainability, causing risk assessors to have insufficient trust in their predictions. Here, we explore 'trust' as an essential factor towards regulatory acceptance of AI/ML models. We provide an overview of the elements of trust, including technical and beyond-technical aspects, and highlight elements that are considered most important to build trust by risk assessors. The results provide recommendations for risk assessors and computational modelers for future development of AI/ML models, including: 1) Keep models simple and interpretable; 2) Offer transparency in the data and data curation; 3) Clearly define and communicate the scope/intended purpose; 4) Define adoption criteria; 5) Make models accessible and user-friendly; 6) Demonstrate the added value in practical settings; and 7) Engage in interdisciplinary settings. These recommendations should ideally be acknowledged in future developments to stimulate trust and acceptance of AI/ML models for regulatory purposes.


Assuntos
Inteligência Artificial , Confiança , Aprendizado de Máquina , Simulação por Computador , Medição de Risco
3.
Ecotoxicol Environ Saf ; 272: 116035, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309234

RESUMO

A suspension of copper oxide nanoparticles (CuO NPs) is a mixture of dissolved and particulate Cu, the relative proportions of which highly depend on the water chemistry. However, the relationship between different proportions of particulate and dissolved Cu and the overall toxicity of CuO NPs is still unknown. This study investigated the response of Chlorella vulgaris to CuO NPs at varying solution pH and at different tannic acid (TA) additions, with a focus on exploring whether and how dissolved and particulate Cu contribute to the overall toxicity of CuO NPs. The results of the exposure experiments demonstrated the involvement of both dissolved and particulate Cu in inducing toxicity of CuO NPs, and the inhibition of CuO NPs on cell density of Chlorella vulgaris was found to be significantly (p < 0.05) alleviated with increased levels of TA and pH (< 8). Using the independent action model, the contribution to toxicity of particulate Cu was found to be enhanced with increasing pH values and TA concentrations. The toxic unit indicator better (R2 = 0.86, p < 0.001) explained impacts of CuO NPs on micro-algae cells than commonly used mass concentrations (R2 = 0.27-0.77, p < 0.05) across different levels of pH and TA. Overall, our study provides an additivity-based method to improve the accuracy of toxicity prediction through including contributions to toxicity of both dissolved and particulate Cu and through eliminating the uneven distribution of data due to large variations in total Cu, particulate Cu, dissolved Cu, Cu2+ activities, Cu-TA complexes and other Cu-complexes concentrations with varying water chemistry conditions.


Assuntos
Chlorella vulgaris , Nanopartículas Metálicas , Nanopartículas , Polifenóis , Cobre/toxicidade , Cobre/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Água , Concentração de Íons de Hidrogênio
4.
Environ Sci Technol ; 57(7): 2792-2803, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36747472

RESUMO

Herein, we investigated to which extent metallic nanoparticles (MNPs) affect the trophic transfer of other coexisting MNPs from lettuce to terrestrial snails and the associated tissue-specific distribution using toxicokinetic (TK) modeling and single-particle inductively coupled plasma mass spectrometry. During a period of 22 days, snails were fed with lettuce leaves that were root exposed to AgNO3 (0.05 mg/L), AgNPs (0.75 mg/L), TiO2NPs (200 mg/L), and a mixture of AgNPs and TiO2NPs (equivalent doses as for single NPs). The uptake rate constants (ku) were 0.08 and 0.11 kg leaves/kg snail/d for Ag and 1.63 and 1.79 kg leaves/kg snail/d for Ti in snails fed with NPs single- and mixture-exposed lettuce, respectively. The elimination rate constants (ke) of Ag in snails exposed to single AgNPs and mixed AgNPs were comparable to the corresponding ku, while the ke for Ti were lower than the corresponding ku. As a result, single TiO2NP treatments as well as exposure to mixtures containing TiO2NPs induced significant biomagnification from lettuce to snails with kinetic trophic transfer factors (TTFk) of 7.99 and 6.46. The TTFk of Ag in the single AgNPs treatment (1.15 kg leaves/kg snail) was significantly greater than the TTFk in the mixture treatment (0.85 kg leaves/kg snail), while the fraction of Ag remaining in the body of snails after AgNPs exposure (36%) was lower than the Ag fraction remaining after mixture exposure (50%). These results indicated that the presence of TiO2NPs inhibited the trophic transfer of AgNPs from lettuce to snails but enhanced the retention of AgNPs in snails. Biomagnification of AgNPs from lettuce to snails was observed in an AgNPs single treatment using AgNPs number as the dose metric, which was reflected by the particle number-based TTFs of AgNPs in snails (1.67, i.e., higher than 1). The size distribution of AgNPs was shifted across the lettuce-snail food chain. By making use of particle-specific measurements and fitting TK processes, this research provides important implications for potential risks associated with the trophic transfer of MNP mixtures.


Assuntos
Cadeia Alimentar , Nanopartículas Metálicas , Toxicocinética , Lactuca , Transporte Biológico
5.
Environ Sci Technol ; 57(30): 11009-11021, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37471269

RESUMO

Molybdenum disulfide (MoS2) nanosheets are increasingly applied in several fields, but effective and accurate strategies to fully characterize potential risks to soil ecosystems are lacking. We introduce a coelomocyte-based in vivo exposure strategy to identify novel adverse outcome pathways (AOPs) and molecular endpoints from nontransformed (NTMoS2) and ultraviolet-transformed (UTMoS2) MoS2 nanosheets (10 and 100 mg Mo/L) on the earthworm Eisenia fetida using nontargeted lipidomics integrated with transcriptomics. Machine learning-based digital pathology analysis coupled with phenotypic monitoring was further used to establish the correlation between lipid profiling and whole organism effects. As an ionic control, Na2MoO4 exposure significantly reduced (61.2-79.5%) the cellular contents of membrane-associated lipids (glycerophospholipids) in earthworm coelomocytes. Downregulation of the unsaturated fatty acid synthesis pathway and leakage of lactate dehydrogenase (LDH) verified the Na2MoO4-induced membrane stress. Compared to conventional molybdate, NTMoS2 inhibited genes related to transmembrane transport and caused the differential upregulation of phospholipid content. Unlike NTMoS2, UTMoS2 specifically upregulated the glyceride metabolism (10.3-179%) and lipid peroxidation degree (50.4-69.4%). Consequently, lipolytic pathways were activated to compensate for the potential energy deprivation. With pathology image quantification, we report that UTMoS2 caused more severe epithelial damage and intestinal steatosis than NTMoS2, which is attributed to the edge effect and higher Mo release upon UV irradiation. Our results reveal differential AOPs involving soil sentinel organisms exposed to different Mo forms, demonstrating the potential of liposome analysis to identify novel AOPs and furthermore accurate soil risk assessment strategies for emerging contaminants.


Assuntos
Rotas de Resultados Adversos , Oligoquetos , Poluentes do Solo , Animais , Poluentes do Solo/toxicidade , Oligoquetos/metabolismo , Lipidômica , Molibdênio/toxicidade , Ecossistema , Solo
6.
Environ Sci Technol ; 57(51): 21637-21649, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38012053

RESUMO

Fully understanding the cellular uptake and intracellular localization of MoS2 nanosheets (NSMoS2) is a prerequisite for their safe applications. Here, we characterized the uptake profile of NSMoS2 by functional coelomocytes of the earthworm Eisenia fetida. Considering that vacancy engineering is widely applied to enhance the NSMoS2 performance, we assessed the potential role of such atomic vacancies in regulating cellular uptake processes. Coelomocyte internalization and lysosomal accumulation of NSMoS2 were tracked by fluorescent labeling imaging. Cellular uptake inhibitors, proteomics, and transcriptomics helped to mechanistically distinguish vacancy-mediated endocytosis pathways. Specifically, Mo ions activated transmembrane transporter and ion-binding pathways, entering the coelomocyte through assisted diffusion. Unlike molybdate, pristine NSMoS2 (P-NSMoS2) induced protein polymerization and upregulated gene expression related to actin filament binding, which phenotypically initiated actin-mediated endocytosis. Conversely, vacancy-rich NSMoS2 (V-NSMoS2) were internalized by coelomocytes through a vesicle-mediated and energy-dependent pathway. Mechanistically, atomic vacancies inhibited mitochondrial transport gene expression and likely induced membrane stress, significantly enhancing endocytosis (20.3%, p < 0.001). Molecular dynamics modeling revealed structural and conformational damage of cytoskeletal protein caused by P-NSMoS2, as well as the rapid response of transport protein to V-NSMoS2. These findings demonstrate that earthworm functional coelomocytes can accumulate NSMoS2 and directly mediate cytotoxicity and that atomic vacancies can alter the endocytic pathway and enhance cellular uptake by reprogramming protein response and gene expression patterns. This study provides an important mechanistic understanding of the ecological risks of NSMoS2.


Assuntos
Oligoquetos , Animais , Oligoquetos/metabolismo , Molibdênio/farmacologia , Transporte Biológico , Simulação por Computador , Imagem Molecular
7.
Ecotoxicol Environ Saf ; 249: 114431, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521269

RESUMO

The aquatic system is a major sink for engineered nanomaterials released into the environment. Here, we assessed the toxicity of graphene oxide (GO) using the freshwater planarian Dugesia japonica, an invertebrate model that has been widely used for studying the effects of toxins on tissue regeneration and neuronal development. GO not only impaired the growth of normal (homeostatic) worms, but also inhibited the regeneration processes of regenerating (amputated) worms, with LC10 values of 9.86 mg/L and 9.32 mg/L for the 48-h acute toxicity test, respectively. High concentration (200 mg/L) of GO killed all the worms after 3 (regenerating) or 4 (homeostasis) days of exposure. Whole-mount in situ hybridization (WISH) and immunofluorescence analyses suggest GO impaired stem cell proliferation and differentiation, and subsequently caused cell apoptosis and oxidative DNA damage during planarian regeneration. Mechanistic analysis suggests that GO disturbed the antioxidative system (enzymatic and non-enzymatic) and energy metabolism in the planarian at both molecular and genetic levels, thus causing reactive oxygen species (ROS) over accumulation and oxidative damage, including oxidative DNA damage, loss of mitochondrial membrane integrity, lack of energy supply for cell differentiation and proliferation leading to retardance of neuron regeneration. The intrinsic oxidative potential of GO contributes to the GO-induced toxicity in planarians. These data suggest that GO in aquatic systems can cause oxidative stress and neurotoxicity in planarians. Overall, regenerated tissues are more sensitive to GO toxicity than homeostatic ones, suggesting that careful handling and appropriate decisions are needed in the application of GO to achieve healing and tissue regeneration.


Assuntos
Planárias , Animais , Planárias/genética , Homeostase/fisiologia , Apoptose , Oxirredução , Água Doce
8.
Molecules ; 28(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36838704

RESUMO

Elicitors are stressors that activate secondary pathways that lead to the increased production of bioactive molecules in plants. Different elicitors including the fungus Aspergillus niger (0.2 g/L), methyl jasmonate (MeJA, 100 µM/L), and silver nanoparticles (1 µg/L) were added, individually and in combination, in a hydroponic medium. The application of these elicitors in hydroponic culture significantly increased the concentration of photosynthetic pigments and total phenolic contents. The treatment with MeJA (methyl jasmonate) (100 µM/L) and the co-treatment of MeJA and AgNPs (silver nanoparticles) (100 µM/L + 1 µg/L) exhibited the highest chlorophyll a (29 µg g-1 FW) and chlorophyll b (33.6 µg g-1 FW) contents, respectively. The elicitor MeJA (100 µM/L) gave a substantial rise in chlorophyll a and b and total chlorophyll contents. Likewise, a significant rise in carotenoid contents (9 µg/g FW) was also observed when subjected to meJA (100 µM/L). For the phenolic content, the treatment with meJA (100 µM/L) proved to be very effective. Nevertheless, the highest production (431 µg/g FW) was observed when treated with AgNPs (1 µg/L). The treatments with various elicitors in this study had a significant effect on flavonoid and lignin content. The highest concentration of flavonoids and lignin was observed when MeJA (100 mM) was used as an elicitor, following a 72-h treatment period. Hence, for different plant metabolites, the treatment with meJA (100 µM/L) and a co-treatment of MeJA and AgNPs (100 µM/L + 1 µg/L) under prolonged exposure times of 120-144 h proved to be the most promising in the accretion of valuable bioactive molecules. The study opens new insights into the use of these elicitors, individually or in combination, by using different concentrations and compositions.


Assuntos
Nanopartículas Metálicas , Silybum marianum , Silybum marianum/metabolismo , Clorofila A/metabolismo , Lignina/metabolismo , Prata/metabolismo , Hidroponia , Flavonoides/química , Acetatos/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Fenóis/metabolismo
9.
J Comput Chem ; 43(15): 1042-1052, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35403727

RESUMO

Screening and prioritization of chemicals is essential to ensure that available evaluation capacity is invested in those substances that are of highest concern. We, therefore, recently developed structural similarity models that evaluate the structural similarity of substances with unknown properties to known Substances of Very High Concern (SVHC), which could be an indication of comparable effects. In the current study the performance of these models is improved by (1) separating known SVHCs in more specific subgroups, (2) (re-)optimizing similarity models for the various SVHC-subgroups, and (3) improving interpretability of the predicted outcomes by providing a confidence score. The improvements are directly incorporated in a freely accessible web-based tool, named the ZZS similarity tool: https://rvszoeksysteem.rivm.nl/ZzsSimilarityTool. Accordingly, this tool can be used by risk assessors, academia and industrial partners to screen and prioritize chemicals for further action and evaluation within varying frameworks, and could support the identification of tomorrow's substances of concern.

10.
J Chem Inf Model ; 62(15): 3589-3603, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35876029

RESUMO

Ingested nanomaterials are exposed to many metabolites that are produced, modified, or regulated by members of the enteric microbiota. The adsorption of these metabolites potentially affects the identity, fate, and biodistribution of nanomaterials passing the gastrointestinal tract. Here, we explore these interactions using in silico methods, focusing on a concise overview of 170 unique enteric microbial metabolites which we compiled from the literature. First, we construct quantitative structure-activity relationship (QSAR) models to predict their adsorption affinity to 13 metal nanomaterials, 5 carbon nanotubes, and 1 fullerene. The models could be applied to predict log k values for 60 metabolites and were particularly applicable to 'phenolic, benzoyl and phenyl derivatives', 'tryptophan precursors and metabolites', 'short-chain fatty acids', and 'choline metabolites'. The correlations of these predictions to biological surface adsorption index descriptors indicated that hydrophobicity-driven interactions contribute most to the overall adsorption affinity, while hydrogen-bond interactions and polarity/polarizability-driven interactions differentiate the affinity to metal and carbon nanomaterials. Next, we use molecular dynamics (MD) simulations to obtain direct molecular information for a selection of vitamins that could not be assessed quantitatively using QSAR models. This showed how large and flexible metabolites can gain stability on the nanomaterial surface via conformational changes. Additionally, unconstrained MD simulations provided excellent support for the main interaction types identified by QSAR analysis. Combined, these results enable assessing the adsorption affinity for many enteric microbial metabolites quantitatively and support the qualitative assessment of an even larger set of complex and biologically relevant microbial metabolites to carbon and metal nanomaterials.


Assuntos
Nanoestruturas , Nanotubos de Carbono , Adsorção , Metais , Nanoestruturas/química , Nanotubos de Carbono/química , Distribuição Tecidual
11.
Environ Sci Technol ; 56(22): 15238-15250, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36196869

RESUMO

The rapid development of nanomaterials (NMs) and the emergence of new multicomponent NMs will inevitably lead to simultaneous exposure of organisms to multiple engineered nanoparticles (ENPs) at varying exposure levels. Understanding the joint impacts of multiple ENPs and predicting the toxicity of mixtures of ENPs are therefore evidently of importance. We reviewed the toxicity of mixtures of ENPs to a variety of different species, covering algae, bacteria, daphnia, fish, fungi, insects, and plants. Most studies used the independent-action (IA)-based model to assess the type of joint effects. Using co-occurrence networks, it was revealed that 53% of the cases with specific joint response showed antagonistic, 25% synergistic, and 22% additive effects. The combination of nCuO and nZnO exhibited the strongest interactions in each type of joint interaction. Compared with other species, plants exposed to multiple ENPs were more likely to experience antagonistic effects. The main factors influencing the joint response type of the mixtures were (1) the chemical composition of individual components in mixtures, (2) the stability of suspensions of mixed ENPs, (3) the type and trophic level of the individual organisms tested, (4) the biological level of organization (population, communities, ecosystems), (5) the exposure concentrations and time, (6) the endpoint of toxicity, and (7) the abiotic field conditions (e.g., pH, ionic strength, natural organic matter). This knowledge is critical in developing efficient strategies for the assessment of the hazards induced by combined exposure to multiple ENPs in complex environments. In addition, this knowledge of the joint effects of multiple ENPs assists in the effective prediction of hybrid NMs.


Assuntos
Nanopartículas , Nanoestruturas , Animais , Ecossistema , Nanopartículas/química , Nanoestruturas/toxicidade , Daphnia , Suspensões , Plantas
12.
Environ Sci Technol ; 56(5): 3085-3095, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35174701

RESUMO

Nanoplastics (NPs) have become a new type of pollutant of high concern that is ubiquitous in aqueous environments. However, the transport and transformation of NPs in natural waters are not yet fully understood. In this study, the aggregation and photooxidation of NPs were assessed with nanosized polystyrene (PS) as an example, and the effects of dissolved organic matter (DOM) were investigated with Suwannee River fulvic acid (SRFA) as representative DOM. The results showed that simulated sunlight irradiation exhibited negligible effects on the aggregation of PS, while SRFA enhanced its heteroaggregation through hydrophobic interactions. In SRFA solutions, photooxidation of PS with a particle size of 200 nm was observed, which led to an increase in the O/C ratio on its surface at a rate of (2.20 ± 0.40) × 10-2 h-1. This indicates the promotional effect of SRFA on the oxidation of nanosized PS, which is attributed to the generation of the excited triplet state (3SRFA*), hydroxyl radicals (•OH), and singlet oxygen (1O2). Among these reactive species, 1O2 played a crucial role in the oxidation of PS. The findings in this study are helpful for an in-depth understanding of the environmental behavior of NPs in natural waters.


Assuntos
Matéria Orgânica Dissolvida , Luz Solar , Poluentes Químicos da Água , Microplásticos , Água/química , Poluentes Químicos da Água/química
13.
Environ Sci Technol ; 56(4): 2115-2123, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35084191

RESUMO

It is an important topic in environmental sciences to understand the behavior and toxicology of chemical pollutants. Quantum chemical methodologies have served as useful tools for probing behavior and toxicology of chemical pollutants in recent decades. In recent years, machine learning (ML) techniques have brought revolutionary developments to the field of quantum chemistry, which may be beneficial for investigating environmental behavior and toxicology of chemical pollutants. However, the ML-based quantum chemical methods (ML-QCMs) have only scarcely been used in environmental chemical studies so far. To promote applications of the promising methods, this Perspective summarizes recent progress in the ML-QCMs and focuses on their potential applications in environmental chemical studies that could hardly be achieved by the conventional quantum chemical methods. Potential applications and challenges of the ML-QCMs in predicting degradation networks of chemical pollutants, searching global minima for atmospheric nanoclusters, discovering heterogeneous or photochemical transformation pathways of pollutants, as well as predicting environmentally relevant end points with wave functions as descriptors are introduced and discussed.


Assuntos
Poluentes Ambientais , Aprendizado de Máquina
14.
Environ Sci Technol ; 56(2): 1138-1148, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34964610

RESUMO

Soil ecotoxicological assays on nanoparticles (NPs) have mainly investigated single components (e.g., plants, fauna, and microbes) within the ecosystem, neglecting possible effects resulting from the disturbance of the interactions between these components. Here, we investigated soil microbial responses to CeO2 NPs in the presence and absence of earthworms from the perspectives of microbial functions (i.e., enzyme activities), the community structure, and soil metabolite profiles. Exposure to CeO2 NPs (50, 500 mg/kg) alone decreased the activities of enzymes (i.e., acid protease and acid phosphatase) participating in soil N and P cycles, while the presence of earthworms ameliorated these inhibitory effects. After the CeO2 NP exposure, the earthworms significantly altered the relative abundance of some microbes associated with the soil N and P cycles (Flavobacterium, Pedobacter, Streptomyces, Bacillus, Bacteroidota, Actinobacteria, and Firmicutes). This was consistent with the pattern found in the significantly changed metabolites which were also involved in the microbial N and P metabolism. Both CeO2 NPs and earthworms changed the soil bacterial community and soil metabolite profiles. Larger alterations of soil bacteria and metabolites were found under CeO2 NP exposure with earthworms. Overall, our study indicates that the top-down control of earthworms can drastically modify the microbial responses to CeO2 NPs from all studied biological aspects. This clearly shows the importance of the holistic consideration of all soil ecological components to assess the environmental risks of NPs to soil health.


Assuntos
Cério , Nanopartículas , Oligoquetos , Poluentes do Solo , Animais , Cério/toxicidade , Ecossistema , Nanopartículas/toxicidade , Oligoquetos/metabolismo , Solo/química , Microbiologia do Solo , Poluentes do Solo/metabolismo
15.
Regul Toxicol Pharmacol ; 131: 105156, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35321839

RESUMO

In recent years, various ecotoxicological test guidelines and (technical) guidance documents have been evaluated and updated with regard to their applicability to nanomaterials (NMs). Several of these have currently reached official regulatory status. Ensuring their harmonized implementation with previously recognized methods for ecotoxicity testing of chemicals is a crucial next step towards effective and efficient regulation of NMs. In the present study, we evaluated the feasibility of assessing multigenerational effects in the first generation of offspring derived from exposed Daphnia magna whilst maintaining test conditions in accordance with regulatory test guidelines and guidance documents for NMs. To do so, we integrated the recommendations for ecotoxicological testing of NMs as defined in OECD Guidance Document 317 into an extended long-term D. magna reproduction test method (OECD Test Guideline 211) and assessed effects of two poorly soluble NMs (nTiO2 and nCeO2). Our results show adverse effects on life-history parameters of D. magna exposed to the selected nanomaterials within the range of reported environmental concentrations. We argue that conforming to OECD test guidelines and accompanying guidance for nanomaterials is feasible when performing D. magna reproduction tests and can minimize unnecessary duplication of similar experiments, even when extensions to the standardized test setup are added.


Assuntos
Nanoestruturas , Poluentes Químicos da Água , Animais , Daphnia , Ecotoxicologia/métodos , Nanoestruturas/toxicidade , Reprodução , Poluentes Químicos da Água/toxicidade
16.
Ecotoxicol Environ Saf ; 242: 113922, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35905629

RESUMO

Rare earth elements (REEs) have been widely applied as fertilizers in farmland of China for decades to improve the yield and quality of crops. Unfortunately, adverse effects on plants have been observed due to overdosing with REEs. Until now, the toxicology of REEs was mainly evaluated based on phenotypic responses, but knowledge gaps still exist concerning their metabolic effects. Here, the physiological responses and nontargeted metabolomics studies were combined to systematically explore the potential effects of La and Ce on a crop plant, wheat Triticum aestivum. It was observed that REEs accumulated in the shoots of wheat, with significant reduction of the shoot biomass at higher exposure doses. The disturbance of photosynthesis and induced oxidative stress were identified by analyzing indicators of the photosynthetic (chlorophyll a/b, carotenoid and rubisco) and antioxidant systems (POD, CAT, SOD, GSH and MDA). Furthermore, the global metabolic profiles of REEs treatment groups and the non-exposed control group were screened and compared, and the metabolomic disturbance of REEs was dose-dependent. A high overlap of significantly changed metabolites and matched disturbed biological pathways was found between La and Ce treatments, indicating similarity of their toxicity mechanism in wheat shoots. Generally, the perturbed metabolomic pathways were mainly related to carbohydrate, amino acid and nucleotide/side metabolism, suggesting a disturbance of carbon and nitrogen metabolism, which finally affected the growth of wheat. We thus proved the potential adverse effect of inappropriate application of REEs in crop plants and postulated metabolomics as a feasible tool to identify the underlying toxicological mechanisms.


Assuntos
Antioxidantes , Metais Terras Raras , Antioxidantes/metabolismo , Clorofila A , Produtos Agrícolas/metabolismo , Metais Terras Raras/toxicidade , Fotossíntese , Triticum
17.
Ecotoxicol Environ Saf ; 237: 113522, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35447474

RESUMO

Many host-microbiota interactions depend on the recognition of microbial constituents by toll-like receptors of the host. The impacts of these interactions on host health can shape the hosts response to environmental pollutants such as nanomaterials. Here, we assess the role of toll-like receptor 2 (TLR2) signaling in the protective effects of colonizing microbiota against silver nanoparticle (nAg) toxicity to zebrafish larvae. Zebrafish larvae were exposed to nAg for two days, from 3 to 5 days post-fertilization. Using an il1ß-reporter line, we first characterized the accumulation and particle-specific inflammatory effects of nAg in the total body and intestinal tissues of the larvae. This showed that silver gradually accumulated in both the total body and intestinal tissues, yet specifically caused particle-specific inflammation on the skin of larvae. Subsequently, we assessed the effects of microbiota-dependent TLR2 signaling on nAg toxicity. This was done by comparing the sensitivity of loss-of-function zebrafish mutants for TLR2, and each of the TLR2-adaptor proteins MyD88 and TIRAP (Mal), under germ-free and microbially-colonized conditions. Irrespective of their genotype, microbially-colonized larvae were less sensitive to nAg than their germ-free siblings, supporting the previously identified protective effect of microbiota against nAg toxicity. Under germ-free conditions, tlr2, myd88 and tirap mutants were equally sensitive to nAg as their wildtype siblings. However, when colonized by microbiota, tlr2 and tirap mutants were more sensitive to nAg than their wildtype siblings. The sensitivity of microbially-colonized myd88 mutants did not differ significantly from that of wildtype siblings. These results indicate that the protective effect of colonizing microbiota against nAg-toxicity to zebrafish larvae involves TIRAP-dependent TLR2 signaling. Overall, this supports the conclusion that host-microbiota interactions affect nanomaterial toxicity to zebrafish larvae.


Assuntos
Nanopartículas Metálicas , Microbiota , Animais , Larva , Nanopartículas Metálicas/toxicidade , Fator 88 de Diferenciação Mieloide/metabolismo , Prata/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
18.
Ecotoxicol Environ Saf ; 241: 113792, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35738106

RESUMO

Multigenerational toxicity tests provide more sensitive measures of population-level effects than conventional single-generation tests. Particularly for stressors which exhibit slow uptake rates (e.g. nanomaterials), multigenerational tests may also provide a more realistic representation of natural exposure scenarios. To date, the inherently high costs and labor intensity have however limited the use of multigenerational toxicity tests and thereby their incorporation in environmental risk assessment. The aim of the present study was therefore to determine to what extent short(er) term endpoints which are conventionally measured in Daphnia magna toxicity tests hold predictive capacity towards reproduction measured over longer timescales, including multiple generations. To assess this, a case-study was performed in which effects of TiO2 nanoparticles (0, 0.02, 0.2, 2 and 5 mg L-1) on D. magna life-history traits were assessed over five generations. Additionally, it was determined whether offspring derived from exposed parents exhibited sustained adverse effects when rearing them in clean (non-exposed) media after each generation of exposure. The present study showed that although various life-history traits correlate with the total reproductive output in the same- and subsequent generation under non-exposed conditions, these correlations were decoupled in presence of exposure to nTiO2. In addition, it was found that nTiO2 can induce adverse effects on population relevant endpoints at concentrations 1-2 orders of magnitude lower than previously found (i.e. 0.02 mg L-1), and close to the range of concentrations occurring in natural freshwater ecosystems.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Animais , Daphnia , Ecossistema , Nanopartículas/toxicidade , Reprodução , Titânio , Poluentes Químicos da Água/toxicidade
19.
Ecotoxicol Environ Saf ; 242: 113920, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35905628

RESUMO

The goal of the current study was to quantify the trophic transfer of copper nanoparticles (CuNPs) in a food chain consisting of the microalga Pseudokirchneriella subcapitata as the representative of primary producer, the grazer Daphnia magna, and the omnivorous mysid Limnomysis benedeni. To quantify the size and number concentration of CuNPs in the biota, tissue extraction with tetramethylammonium hydroxide (TMAH) was performed and quantification was done by single particle inductively coupled plasma mass spectrometry (sp-ICP-MS). The bioconcentration factor (BCF) of the test species for CuNPs varied between 102 - 103 L/kg dry weight when expressing the internal concentration on a mass basis, which was lower than BCF values reported for Cu2+ (103 - 104 L/kg dry weight). The particle size of CuNPs determined by sp-ICP-MS ranged from 22 to 40 nm in the species. No significant changes in the particle size were measured throughout the food chain. Moreover, the measured number of CuNPs in each trophic level was in the order of 1013 particles/kg wet weight. The calculated trophic transfer factor (mass concentration basis) was > 1. This indicates biomagnification of particulate Cu from P. subcapitata to L. benedeni. It was also found that the uptake of particulate Cu (based on the particle number concentration) was mainly from the dietary route rather than from direct aqueous exposure. Furthermore, dietary exposure to CuNPs had a significant effect on the feeding rate of mysid during their transfer from daphnia to mysid and from alga through daphnia to mysid. This work emphasizes the importance of tracing the particulate fraction of metal-based engineered nanoparticles when studying their uptake and trophic transfer.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Poluentes Químicos da Água , Animais , Bioacumulação , Cobre , Daphnia , Cadeia Alimentar , Nanopartículas Metálicas/química , Poluentes Químicos da Água/toxicidade
20.
Ecotoxicol Environ Saf ; 229: 113088, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34923329

RESUMO

Copper-based nanoparticles (NPs) display a strong potential to replace copper salts (e.g., CuSO4) for application in agricultures as antimicrobial agents or nutritional amendments. Yet, their effects on crop quality are still not comprehensively understood. In this study, the Cu contents in soybeans grown in soils amended with Cu NPs and CuSO4 at 100-500 mg Cu/kg and the subsequent effects on the plant physiological markers were determined. The Cu NPs induced 29-89% at the flowering stage (on Day 40) and 100-165% at maturation stage (on Day 100) more Cu accumulation in soybeans than CuSO4. The presence of particle aggregates in the root cells with deformation upon the Cu NP exposure was observed by transmission electron microscopy. The Cu NPs at 100 and 200 mg/kg significantly improved the plant height and biomass, yet significantly inhibited at 500 mg/kg, compared to the control. In leaves chlorophyll-b was more sensitive than chlorophyll-a and carotenoids to the Cu NP effect. The Cu NPs significantly decreased the root nitrogen and phosphorus contents, while they significantly increased the leaf potassium content in comparison with control. Our results imply that cautious use of Cu NPs in agriculture is warranted due to relatively high uptake of Cu and altered nutrient quality in soybeans.


Assuntos
Cobre , Nanopartículas , Agricultura , Cobre/análise , Cobre/toxicidade , Nanopartículas/toxicidade , Raízes de Plantas/química , Solo , Glycine max
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA