Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Evol ; 92(1): 61-71, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324225

RESUMO

Eukaryotic cells use G protein-coupled receptors (GPCRs) to convert external stimuli into internal signals to elicit cellular responses. However, how mutations in GPCR-coding genes affect GPCR activation and downstream signaling pathways remain poorly understood. Approaches such as deep mutational scanning show promise in investigations of GPCRs, but a high-throughput method to measure rhodopsin activation has yet to be achieved. Here, we scale up a fluorescent reporter assay in budding yeast that we engineered to study rhodopsin's light-activated signal transduction. Using this approach, we measured the mutational effects of over 1200 individual human rhodopsin mutants, generated by low-frequency random mutagenesis of the GPCR rhodopsin (RHO) gene. Analysis of the data in the context of rhodopsin's three-dimensional structure reveals that transmembrane helices are generally less tolerant to mutations compared to flanking helices that face the lipid bilayer, which suggest that mutational tolerance is contingent on both the local environment surrounding specific residues and the specific position of these residues in the protein structure. Comparison of functional scores from our screen to clinically identified rhodopsin disease variants found many pathogenic mutants to be loss of function. Lastly, functional scores from our assay were consistent with a complex counterion mechanism involved in ligand-binding and rhodopsin activation. Our results demonstrate that deep mutational scanning is possible for rhodopsin activation and can be an effective method for revealing properties of mutational tolerance that may be generalizable to other transmembrane proteins.


Assuntos
Receptores Acoplados a Proteínas G , Rodopsina , Humanos , Rodopsina/genética , Rodopsina/química , Rodopsina/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/química , Transdução de Sinais , Estrutura Secundária de Proteína , Mutação
2.
J Biol Chem ; 293(9): 3307-3320, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29301934

RESUMO

Host colonization by Gram-negative pathogens often involves delivery of bacterial proteins called "effectors" into the host cell. The pneumonia-causing pathogen Legionella pneumophila delivers more than 330 effectors into the host cell via its type IVB Dot/Icm secretion system. The collective functions of these proteins are the establishment of a replicative niche from which Legionella can recruit cellular materials to grow while evading lysosomal fusion inhibiting its growth. Using a combination of structural, biochemical, and in vivo approaches, we show that one of these translocated effector proteins, Ceg4, is a phosphotyrosine phosphatase harboring a haloacid dehalogenase-hydrolase domain. Ceg4 could dephosphorylate a broad range of phosphotyrosine-containing peptides in vitro and attenuated activation of MAPK-controlled pathways in both yeast and human cells. Our findings indicate that L. pneumophila's infectious program includes manipulation of phosphorylation cascades in key host pathways. The structural and functional features of the Ceg4 effector unraveled here provide first insight into its function as a phosphotyrosine phosphatase, paving the way to further studies into L. pneumophila pathogenicity.


Assuntos
Interações Hospedeiro-Patógeno , Legionella pneumophila/enzimologia , Sistema de Sinalização das MAP Quinases , Proteínas Tirosina Fosfatases/metabolismo , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Células HeLa , Humanos , Legionella pneumophila/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Nature ; 488(7411): 384-8, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22820255

RESUMO

Bacterial pathogens have evolved specific effector proteins that, by interfacing with host kinase signalling pathways, provide a mechanism to evade immune responses during infection. Although these effectors contribute to pathogen virulence, we realized that they might also serve as valuable synthetic biology reagents for engineering cellular behaviour. Here we exploit two effector proteins, the Shigella flexneri OspF protein and Yersinia pestis YopH protein, to rewire kinase-mediated responses systematically both in yeast and mammalian immune cells. Bacterial effector proteins can be directed to inhibit specific mitogen-activated protein kinase pathways selectively in yeast by artificially targeting them to pathway-specific complexes. Moreover, we show that unique properties of the effectors generate new pathway behaviours: OspF, which irreversibly inactivates mitogen-activated protein kinases, was used to construct a synthetic feedback circuit that shows novel frequency-dependent input filtering. Finally, we show that effectors can be used in T cells, either as feedback modulators to tune the T-cell response amplitude precisely, or as an inducible pause switch that can temporarily disable T-cell activation. These studies demonstrate how pathogens could provide a rich toolkit of parts to engineer cells for therapeutic or biotechnological applications.


Assuntos
Proteínas de Bactérias/metabolismo , Biotecnologia/métodos , Engenharia Genética/métodos , Sistema de Sinalização das MAP Quinases , Saccharomyces cerevisiae/enzimologia , Linfócitos T/enzimologia , Fatores de Virulência/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proliferação de Células , Células Cultivadas , Retroalimentação Fisiológica , Humanos , Interleucina-2/imunologia , Células Jurkat , Ativação Linfocitária/genética , Concentração Osmolar , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Shigella flexneri/genética , Shigella flexneri/metabolismo , Shigella flexneri/patogenicidade , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores de Virulência/genética , Yersinia pestis/genética , Yersinia pestis/metabolismo , Yersinia pestis/patogenicidade
4.
PLoS Biol ; 12(12): e1002012, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25490747

RESUMO

The rearrangement of protein domains is known to have key roles in the evolution of signaling networks and, consequently, is a major tool used to synthetically rewire networks. However, natural mutational events leading to the creation of proteins with novel domain combinations, such as in frame fusions followed by domain loss, retrotranspositions, or translocations, to name a few, often simultaneously replace pre-existing genes. Thus, while proteins with new domain combinations may establish novel network connections, it is not clear how the concomitant deletions are tolerated. We investigated the mechanisms that enable signaling networks to tolerate domain rearrangement-mediated gene replacements. Using as a model system the yeast mitogen activated protein kinase (MAPK)-mediated mating pathway, we analyzed 92 domain-rearrangement events affecting 11 genes. Our results indicate that, while domain rearrangement events that result in the loss of catalytic activities within the signaling complex are not tolerated, domain rearrangements can drastically alter protein interactions without impairing function. This suggests that signaling complexes can maintain function even when some components are recruited to alternative sites within the complex. Furthermore, we also found that the ability of the complex to tolerate changes in interaction partners does not depend on long disordered linkers that often connect domains. Taken together, our results suggest that some signaling complexes are dynamic ensembles with loose spatial constraints that could be easily re-shaped by evolution and, therefore, are ideal targets for cellular engineering.


Assuntos
Mapas de Interação de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Evolução Molecular , Rearranjo Gênico , Genes Fúngicos Tipo Acasalamento , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
5.
Nat Genet ; 38(2): 168-74, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16415885

RESUMO

New protein folds have emerged throughout evolution, but it remains unclear how a protein fold can evolve while maintaining its function, particularly when fold changes require several sequential gene rearrangements. Here, we explored hypothetical evolutionary pathways linking different topological families of the DNA-methyltransferase superfamily. These pathways entail successive gene rearrangements through a series of intermediates, all of which should be sufficiently active to maintain the organism's fitness. By means of directed evolution, and starting from HaeIII methyltransferase (M.HaeIII), we selected all the required intermediates along these paths (a duplicated fused gene and duplicates partially truncated at their 5' or 3' coding regions) that maintained function in vivo. These intermediates led to new functional genes that resembled natural methyltransferases from three known classes or that belonged to a new class first seen in our evolution experiments and subsequently identified in natural genomes. Our findings show that new protein topologies can evolve gradually through multistep gene rearrangements and provide new insights regarding these processes.


Assuntos
Evolução Molecular , Rearranjo Gênico/genética , Proteínas/química , Proteínas/genética , Sequência de Aminoácidos , DNA-Citosina Metilases/química , DNA-Citosina Metilases/genética , Evolução Molecular Direcionada , Duplicação Gênica , Genoma Bacteriano , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Mutação Puntual/genética , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão , Alinhamento de Sequência
6.
J Exp Zool B Mol Dev Evol ; 322(7): 465-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25045153

RESUMO

This is an exciting time to be an evolutionary biologist. Indeed, it is difficult to keep up with all the studies that fall under the broad category of "Evolution" since they span species, traits, and scales of organization. This special issue gives a flavor of exciting new approaches in evolutionary biology, but also emphasizes universal themes. The reviews contained here discuss important aspects of molecular evolution at multiple scales, from individual proteins to complex regulatory networks, as well as from unicellular organisms to macroscopic traits in animals. Though the model systems are diverse, the issues addressed are fundamental: the origin of evolutionary novelties, and the forces that drive them to fixation.


Assuntos
Evolução Molecular , Evolução Biológica , Modelos Biológicos
7.
J Exp Zool B Mol Dev Evol ; 322(2): 65-72, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24255009

RESUMO

In a seminal paper entitled "Evolution and Tinkering," François Jacob affirmed that: "Novelties come from previously unseen association of old material. To create is to recombine" [Jacob F. (1977) Science 196:1161-1166]. In the 35 years that have passed since Jacob's insight, we have amassed enough data to actually shed light on many of the molecular mechanisms that enable evolution to create novelty by simply recombining what existed already. In this review, we will succinctly discuss the role that the recombination of protein domains has in the evolution of signaling networks, drawing from examples provided by diverse disciplines, including bioinformatics, systems and synthetic biology, and laboratory evolution.


Assuntos
Evolução Biológica , Proteoma/fisiologia , Transdução de Sinais/fisiologia , Biologia Computacional , Evolução Molecular Direcionada , Proteoma/genética , Transdução de Sinais/genética , Biologia de Sistemas
8.
Nat Med ; 27(7): 1212-1222, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34183837

RESUMO

Inflammatory bowel disease (IBD) is a complex chronic inflammatory disorder of the gastrointestinal tract. Extracellular adenosine triphosphate (eATP) produced by the commensal microbiota and host cells activates purinergic signaling, promoting intestinal inflammation and pathology. Based on the role of eATP in intestinal inflammation, we developed yeast-based engineered probiotics that express a human P2Y2 purinergic receptor with up to a 1,000-fold increase in eATP sensitivity. We linked the activation of this engineered P2Y2 receptor to the secretion of the ATP-degrading enzyme apyrase, thus creating engineered yeast probiotics capable of sensing a pro-inflammatory molecule and generating a proportional self-regulated response aimed at its neutralization. These self-tunable yeast probiotics suppressed intestinal inflammation in mouse models of IBD, reducing intestinal fibrosis and dysbiosis with an efficacy similar to or higher than that of standard-of-care therapies usually associated with notable adverse events. By combining directed evolution and synthetic gene circuits, we developed a unique self-modulatory platform for the treatment of IBD and potentially other inflammation-driven pathologies.


Assuntos
Trifosfato de Adenosina/metabolismo , Apirase/metabolismo , Doenças Inflamatórias Intestinais/terapia , Probióticos/uso terapêutico , Receptores Purinérgicos P2Y2/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Apirase/genética , Sistemas CRISPR-Cas/genética , Modelos Animais de Doenças , Disbiose/prevenção & controle , Feminino , Fibrose/prevenção & controle , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/patologia , Humanos , Doenças Inflamatórias Intestinais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Purinérgicos P2Y2/genética , Saccharomyces cerevisiae/genética
9.
Nat Methods ; 4(12): 991-4, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18049465

RESUMO

When generating novel tailor-made proteins, protein engineers routinely apply the principles of 'Darwinian' evolution. However, laboratory evolution of proteins also has the potential to test evolutionary theories and reproduce evolutionary scenarios, thus reconstructing putative protein intermediates and providing a glimpse of 'protein fossils'. This commentary describes research at the interface of applied and fundamental molecular evolution, and provides a personal view of how synergy between fundamental and applied experiments indicates novel and more efficient ways of generating new proteins in the laboratory.


Assuntos
Evolução Molecular Direcionada/métodos , Evolução Molecular Direcionada/tendências , Evolução Molecular , Mutagênese Sítio-Dirigida/métodos , Mutagênese Sítio-Dirigida/tendências , Engenharia de Proteínas/métodos , Engenharia de Proteínas/tendências , Proteínas/genética
10.
ACS Synth Biol ; 9(7): 1725-1735, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32497424

RESUMO

Terminal deoxynucleotidyl transferase (TdT) catalyzes template free incorporation of arbitrary nucleotides onto single-stranded DNA. Due to this unique feature, TdT is widely used in biotechnology and clinical applications. One particularly tantalizing use is the synthesis of long de novo DNA molecules by TdT-mediated iterative incorporation of a 3' reversibly blocked nucleotide, followed by deblocking. However, wild-type (WT) TdT is not optimized for the incorporation of 3' modified nucleotides, and TdT engineering is hampered by the fact that TdT is marginally stable and only present in mesophilic organisms. We sought to first evolve a thermostable TdT variant to serve as backbone for subsequent evolution to enable efficient incorporation of 3'-modified nucleotides. A thermostable variant would be a good starting point for such an effort, as evolution to incorporate bulky modified nucleotides generally results in lowered stability. In addition, a thermostable TdT would also be useful when blunt dsDNA is a substrate as higher temperature could be used to melt dsDNA. Here, we developed an assay to identify thermostable TdT variants. After screening about 10 000 TdT mutants, we identified a variant, named TdT3-2, that is 10 °C more thermostable than WT TdT, while preserving the catalytic properties of the WT enzyme.


Assuntos
DNA Nucleotidilexotransferase/química , DNA Nucleotidilexotransferase/genética , Proteínas Mutantes/química , Engenharia de Proteínas/métodos , Temperatura , Sequência de Aminoácidos , Animais , Catálise , Bovinos , DNA Nucleotidilexotransferase/isolamento & purificação , DNA de Cadeia Simples/química , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Mutagênese , Oligonucleotídeos/química , Plasmídeos/genética
11.
Trends Biochem Sci ; 27(4): 183-90, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11943545

RESUMO

Infection by enveloped viruses requires fusion between the viral and cellular membranes, a process mediated by specific viral envelope glycoproteins. Information from studies with whole viruses, as well as protein dissection, has suggested that the fusion glycoprotein (F) from Paramyxoviridae, a family that includes major human pathogens, has two hydrophobic segments, termed fusion peptides. These peptides are directly responsible for the membrane fusion event. The recently determined three-dimensional structure of the pre-fusion conformation of the F protein supported these predictions and enabled the formulation of: (1) a detailed model for the initial interaction between F and the target membrane, (2) a new model for Paramyxovirus-induced membrane fusion that can be extended to other viral families, and (3) a novel strategy for developing better inhibitors of paramyxovirus infection.


Assuntos
Fusão de Membrana/fisiologia , Paramyxoviridae/fisiologia , Sequência de Aminoácidos , Modelos Biológicos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/fisiologia
12.
SLAS Discov ; 24(10): 969-977, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31556794

RESUMO

Retinitis pigmentosa (RP) is a degenerative retinal disease, often caused by mutations in the G-protein-coupled receptor rhodopsin. The majority of pathogenic rhodopsin mutations cause rhodopsin to misfold, including P23H, disrupting its crucial ability to respond to light. Previous screens to discover pharmacological chaperones of rhodopsin have primarily been based on rescuing rhodopsin trafficking and localization to the plasma membrane. Here, we present methods utilizing a yeast-based assay to screen for compounds that rescue the ability of rhodopsin to activate an associated downstream G-protein signaling cascade. We engineered a yeast strain in which human rhodopsin variants were genomically integrated, and were able to demonstrate functional coupling to the yeast mating pathway, leading to fluorescent protein expression. We confirmed that a known pharmacological chaperone, 9-cis retinal, could partially rescue light-dependent activation of a disease-associated rhodopsin mutation (P23H) expressed in yeast. These novel yeast strains were used to perform a phenotypic screen of 4280 compounds from the LOPAC1280 library and a peptidomimetic library, to discover novel pharmacological chaperones of rhodopsin. The fluorescence-based assay was robust in a 96-well format, with a Z' factor of 0.65 and a signal-to-background ratio of above 14. One compound was selected for additional analysis, but it did not appear to rescue rhodopsin function in yeast. The methods presented here are amenable to future screens of small-molecule libraries, as they are robust and cost-effective. We also discuss how these methods could be further modified or adapted to perform screens of more compounds in the future.


Assuntos
Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Bibliotecas de Moléculas Pequenas , Leveduras/efeitos dos fármacos , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Humanos , Mutação , Receptores Acoplados a Proteínas G/genética , Retinose Pigmentar/tratamento farmacológico , Retinose Pigmentar/etiologia , Rodopsina/genética , Transdução de Sinais/efeitos dos fármacos , Leveduras/genética , Leveduras/metabolismo
13.
Genetics ; 211(2): 597-615, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30514708

RESUMO

G protein-coupled receptors (GPCRs) are crucial sensors of extracellular signals in eukaryotes, with multiple GPCR mutations linked to human diseases. With the growing number of sequenced human genomes, determining the pathogenicity of a mutation is challenging, but can be aided by a direct measurement of GPCR-mediated signaling. This is particularly difficult for the visual pigment rhodopsin-a GPCR activated by light-for which hundreds of mutations have been linked to inherited degenerative retinal diseases such as retinitis pigmentosa. In this study, we successfully engineered, for the first time, activation by human rhodopsin of the yeast mating pathway, resulting in signaling via a fluorescent reporter. We combine this novel assay for rhodopsin light-dependent activation with studies of subcellular localization, and the upregulation of the unfolded protein response in response to misfolded rhodopsin protein. We use these assays to characterize a panel of rhodopsin mutations with known molecular phenotypes, finding that rhodopsin maintains a similar molecular phenotype in yeast, with some interesting differences. Furthermore, we compare our assays in yeast with clinical phenotypes from patients with novel disease-linked mutations. We demonstrate that our engineered yeast strain can be useful in rhodopsin mutant classification, and in helping to determine the molecular mechanisms underlying their pathogenicity. This approach may also be applied to better understand the clinical relevance of other human GPCR mutations, furthering the use of yeast as a tool for investigating molecular mechanisms relevant to human disease.


Assuntos
Mutação de Sentido Incorreto , Retinose Pigmentar/genética , Rodopsina/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Genes Fúngicos Tipo Acasalamento/genética , Humanos , Retinose Pigmentar/patologia , Rodopsina/química , Rodopsina/genética , Saccharomyces cerevisiae
14.
G3 (Bethesda) ; 9(2): 535-547, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30573466

RESUMO

Gram-negative bacterial pathogens inject type III secreted effectors (T3SEs) directly into host cells to promote pathogen fitness by manipulating host cellular processes. Despite their crucial role in promoting virulence, relatively few T3SEs have well-characterized enzymatic activities or host targets. This is in part due to functional redundancy within pathogen T3SE repertoires as well as the promiscuity of individual T3SEs that can have multiple host targets. To overcome these challenges, we generated and characterized a collection of yeast strains stably expressing 75 T3SE constructs from the plant pathogen Pseudomonas syringae This collection is devised to facilitate heterologous genetic screens in yeast, a non-host organism, to identify T3SEs that target conserved eukaryotic processes. Among 75 T3SEs tested, we identified 16 that inhibited yeast growth on rich media and eight that inhibited growth on stress-inducing media. We utilized Pathogenic Genetic Array (PGA) screens to identify potential host targets of P. syringae T3SEs. We focused on the acetyltransferase, HopZ1a, which interacts with plant tubulin and alters microtubule networks. To uncover putative HopZ1a host targets, we identified yeast genes with genetic interaction profiles most similar (i.e., congruent) to the PGA profile of HopZ1a and performed a functional enrichment analysis of these HopZ1a-congruent genes. We compared the congruence analyses above to previously described HopZ physical interaction datasets and identified kinesins as potential HopZ1a targets. Finally, we demonstrated that HopZ1a can target kinesins by acetylating the plant kinesins HINKEL and MKRP1, illustrating the utility of our T3SE-expressing yeast library to characterize T3SE functions.


Assuntos
Pseudomonas syringae/genética , Sistemas de Secreção Tipo III/genética , Fatores de Virulência/genética , Acetiltransferases/genética , Acetiltransferases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cinesinas/metabolismo , Ligação Proteica , Pseudomonas syringae/patogenicidade , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Fatores de Virulência/metabolismo
15.
Sci Rep ; 7(1): 16012, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167562

RESUMO

G protein-coupled receptors (GPCRs) must discriminate between hundreds of related signal molecules. In order to better understand how GPCR specificity can arise from a common promiscuous ancestor, we used laboratory evolution to invert the specificity of the Saccharomyces cerevisiae mating receptor Ste2. This GPCR normally responds weakly to the pheromone of the related species Kluyveromyces lactis, though we previously showed that mutation N216S is sufficient to make this receptor promiscuous. Here, we found that three additional substitutions, A265T, Y266F and P290Q, can act together to confer a novel specificity for K. lactis pheromone. Unlike wild-type Ste2, this new variant does not rely on differences in binding affinity to discriminate against its non-preferred ligand. Instead, the mutation P290Q is critical for suppressing the efficacy of the native pheromone. These two alternative methods of ligand discrimination were mapped to specific amino acid positions on the peptide pheromones. Our work demonstrates that changes in ligand efficacy can drive changes in GPCR specificity, thus obviating the need for extensive binding pocket re-modeling.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Kluyveromyces/genética , Kluyveromyces/metabolismo , Mutação , Receptores Acoplados a Proteínas G/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
ACS Synth Biol ; 6(3): 446-454, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-27935292

RESUMO

The cellular concentrations of key components of signaling networks are tightly regulated, as deviations from their optimal ranges can have negative effects on signaling function. For example, overexpression of the yeast mating pathway mitogen-activated protein kinase (MAPK) Fus3 decreases pathway output, in part by sequestering individual components away from functional multiprotein complexes. Using a synthetic biology approach, we investigated potential mechanisms by which selection could compensate for a decrease in signaling activity caused by overexpression of Fus3. We overexpressed a library of random mutants of Fus3 and used cell sorting to select variants that rescued mating pathway activity. Our results uncovered that one remarkable way in which selection can compensate for protein overexpression is by introducing premature stop codons at permitted positions. Because of the low efficiency with which premature stop codons are read through, the resulting cellular concentration of active Fus3 returns to values within the range required for proper signaling. Our results underscore the importance of interpreting genotypic variation at the systems rather than at the individual gene level, as mutations can have opposite effects on protein and network function.


Assuntos
Códon de Terminação/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Transdução de Sinais/genética , Proteínas Fúngicas/genética , Genótipo , Fator de Acasalamento/genética , Mutação/genética , Biologia Sintética/métodos , Leveduras/genética
17.
Methods Mol Biol ; 1596: 321-337, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28293896

RESUMO

The ability to sense and process cues about changing environments is fundamental to life. Cells have evolved elaborate signaling pathways in order to respond to both internal and external stimuli appropriately. These pathways combine protein receptors, signal transducers, and effector genes in highly connected networks. The numerous interactions found between signaling proteins are essential to maintain strict regulation and produce a suitable cellular response. As a result, a signaling protein's activity in isolation can differ greatly from its activity in a native context. This is an important consideration when studying or engineering signaling pathways. Fortunately, the difficulty of studying network interactions is fading thanks to advances in library construction and cell sorting. In this chapter, we describe two methods for generating libraries of mutant proteins that exhibit altered network interactions: whole-gene point mutagenesis and domain shuffling. We then provide a protocol for using fluorescence-activated cell sorting to isolate interesting variants in live cells by focusing on the unicellular eukaryotic model organism Saccharomyces cerevisiae, using as an example recent work that we have done on its G protein-coupled receptor Ste2.


Assuntos
Transdução de Sinais/genética , Clonagem Molecular , Evolução Molecular Direcionada/métodos , Biblioteca Gênica , Mutagênese/genética , Receptores Acoplados a Proteínas G/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
18.
Nat Commun ; 7: 12344, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27487915

RESUMO

All cellular functions depend on the concerted action of multiple proteins organized in complex networks. To understand how selection acts on protein networks, we used the yeast mating receptor Ste2, a pheromone-activated G protein-coupled receptor, as a model system. In Saccharomyces cerevisiae, Ste2 is a hub in a network of interactions controlling both signal transduction and signal suppression. Through laboratory evolution, we obtained 21 mutant receptors sensitive to the pheromone of a related yeast species and investigated the molecular mechanisms behind this newfound sensitivity. While some mutants show enhanced binding affinity to the foreign pheromone, others only display weakened interactions with the network's negative regulators. Importantly, the latter changes have a limited impact on overall pathway regulation, despite their considerable effect on sensitivity. Our results demonstrate that a new receptor-ligand pair can evolve through network-altering mutations independently of receptor-ligand binding, and suggest a potential role for such mutations in disease.


Assuntos
Evolução Molecular , Redes Reguladoras de Genes , Mutação/genética , Receptores de Fator de Acasalamento/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Ativadoras de GTPase/metabolismo , Redes Reguladoras de Genes/efeitos dos fármacos , Ligantes , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Feromônios/farmacologia , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Receptores de Fator de Acasalamento/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Biochim Biophys Acta ; 1614(1): 122-9, 2003 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-12873773

RESUMO

In recent years, the simple picture of a viral fusion protein interacting with the cell and/or viral membranes by means of only two localized segments (i.e. the fusion peptide and the transmembrane domain) has given way to a more complex picture in which multiple regions from the viral proteins interact with membranes. Indeed, possible roles in membrane binding and/or destabilization have been postulated for the N-terminal heptad repeats, pre-transmembrane segments, and other internal regions of fusion proteins from distant viruses (such as orthomyxo-, retro-, paramyxo-, or flaviviruses). This review focuses on the experimental evidence and functional models postulated so far about the role of these regions in the process of virus-induced membrane fusion.


Assuntos
Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo , Sequência de Aminoácidos , Fusão de Membrana , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Sequências Repetitivas de Aminoácidos , Alinhamento de Sequência , Vírus/patogenicidade
20.
J Mol Biol ; 326(5): 1489-501, 2003 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-12595260

RESUMO

gp41 is the protein responsible for the process of membrane fusion that allows primate lentiviruses (HIV and SIV) to enter into their host cells. gp41 ectodomain contains an N-terminal and a C-terminal heptad repeat region (NHR and CHR) connected by an immunodominant loop. In the absence of membranes, the NHR and CHR segments fold into a protease-resistant core with a trimeric helical hairpin structure. However, when the immunodominant loop is not present (either in a complex formed by HIV-1 gp41-derived NHR and CHR peptides or by mild treatment with protease of recombinant constructs of HIV-1 gp41 ectodomain, which also lack the N-terminal fusion peptide and the C-terminal Trp-rich region) membrane binding induces a conformational change in the gp41 core structure. Here, we further investigated whether covalently linking the NHR and CHR segments by the immunodominant loop affects this conformational change. Specifically, we analyzed a construct corresponding to a fragment of SIVmac239 gp41ectodomain (residues 27-149, named e-gp41) by means of surface plasmon resonance, Trp and rhodamine fluorescence, ATR-FTIR spectroscopy, and differential scanning calorimetry. Our results suggest that the presence of the loop stabilizes the trimeric helical hairpin both when e-gp41 is in aqueous solution and when it is bound to the membrane surface. Bearing in mind possible differences between HIV-1 and SIV gp41, and considering that the gp41 ectodomain constructs analyzed to date lack the N-terminal fusion peptide and the C-terminal Trp-rich region, we discuss our observations in relation to the mechanism of virus-induced membrane fusion.


Assuntos
Membrana Celular/fisiologia , Epitopos Imunodominantes/química , Fusão de Membrana , Glicoproteínas de Membrana/química , Conformação Proteica , Proteínas dos Retroviridae/química , Vírus da Imunodeficiência Símia/metabolismo , Triptofano/química , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Cisteína/química , Fluorescência , Temperatura Alta , Humanos , Epitopos Imunodominantes/metabolismo , Lipossomos , Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Proteínas dos Retroviridae/metabolismo , Rodaminas/química , Rodaminas/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA