Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(17): 4377-4379, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34416145

RESUMO

Greater understanding of the events preceding neurodegeneration is needed to design effective preventive and therapeutic strategies. In this issue of Cell, Bowles et al. (2021) report cerebral organoids that reveal early events in frontotemporal dementia pathogenesis due to mutations in microtubule-associated protein tau (MAPT), shedding light on a novel mechanism involving abnormal splicing and glutamate signaling.


Assuntos
Demência Frontotemporal , Organoides , Humanos , Mutação , Proteínas tau/genética
2.
Nature ; 602(7895): 112-116, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35046577

RESUMO

The biological basis of male-female brain differences has been difficult to elucidate in humans. The most notable morphological difference is size, with male individuals having on average a larger brain than female individuals1,2, but a mechanistic understanding of how this difference arises remains unknown. Here we use brain organoids3 to show that although sex chromosomal complement has no observable effect on neurogenesis, sex steroids-namely androgens-lead to increased proliferation of cortical progenitors and an increased neurogenic pool. Transcriptomic analysis and functional studies demonstrate downstream effects on histone deacetylase activity and the mTOR pathway. Finally, we show that androgens specifically increase the neurogenic output of excitatory neuronal progenitors, whereas inhibitory neuronal progenitors are not increased. These findings reveal a role for androgens in regulating the number of excitatory neurons and represent a step towards understanding the origin of sex-related brain differences in humans.


Assuntos
Androgênios/farmacologia , Encéfalo/citologia , Excitabilidade Cortical/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Organoides/citologia , Organoides/efeitos dos fármacos , Caracteres Sexuais , Potenciais de Ação/efeitos dos fármacos , Androgênios/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/metabolismo , Contagem de Células , Feminino , Perfilação da Expressão Gênica , Histona Desacetilases/genética , Humanos , Masculino , Inibição Neural/efeitos dos fármacos , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Organoides/enzimologia , Organoides/metabolismo , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética
3.
Physiol Rev ; 99(2): 1047-1078, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30648461

RESUMO

Cellular senescence is a permanent state of cell cycle arrest that occurs in proliferating cells subjected to different stresses. Senescence is, therefore, a cellular defense mechanism that prevents the cells to acquire an unnecessary damage. The senescent state is accompanied by a failure to re-enter the cell cycle in response to mitogenic stimuli, an enhanced secretory phenotype and resistance to cell death. Senescence takes place in several tissues during different physiological and pathological processes such as tissue remodeling, injury, cancer, and aging. Although senescence is one of the causative processes of aging and it is responsible of aging-related disorders, senescent cells can also play a positive role. In embryogenesis and tissue remodeling, senescent cells are required for the proper development of the embryo and tissue repair. In cancer, senescence works as a potent barrier to prevent tumorigenesis. Therefore, the identification and characterization of key features of senescence, the induction of senescence in cancer cells, or the elimination of senescent cells by pharmacological interventions in aging tissues is gaining consideration in several fields of research. Here, we describe the known key features of senescence, the cell-autonomous, and noncell-autonomous regulators of senescence, and we attempt to discuss the functional role of this fundamental process in different contexts in light of the development of novel therapeutic targets.


Assuntos
Envelhecimento/fisiologia , Transformação Celular Neoplásica/metabolismo , Senescência Celular/fisiologia , Neoplasias/metabolismo , Cicatrização/fisiologia , Envelhecimento/metabolismo , Animais , Proliferação de Células/fisiologia , Humanos
4.
Proc Natl Acad Sci U S A ; 120(4): e2217840120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36656861

RESUMO

BAP1 is a powerful tumor suppressor gene characterized by haplo insufficiency. Individuals carrying germline BAP1 mutations often develop mesothelioma, an aggressive malignancy of the serosal layers covering the lungs, pericardium, and abdominal cavity. Intriguingly, mesotheliomas developing in carriers of germline BAP1 mutations are less aggressive, and these patients have significantly improved survival. We investigated the apparent paradox of a tumor suppressor gene that, when mutated, causes less aggressive mesotheliomas. We discovered that mesothelioma biopsies with biallelic BAP1 mutations showed loss of nuclear HIF-1α staining. We demonstrated that during hypoxia, BAP1 binds, deubiquitylates, and stabilizes HIF-1α, the master regulator of the hypoxia response and tumor cell invasion. Moreover, primary cells from individuals carrying germline BAP1 mutations and primary cells in which BAP1 was silenced using siRNA had reduced HIF-1α protein levels in hypoxia. Computational modeling and co-immunoprecipitation experiments revealed that mutations of BAP1 residues I675, F678, I679, and L691 -encompassing the C-terminal domain-nuclear localization signal- to A, abolished the interaction with HIF-1α. We found that BAP1 binds to the N-terminal region of HIF-1α, where HIF-1α binds DNA and dimerizes with HIF-1ß forming the heterodimeric transactivating complex HIF. Our data identify BAP1 as a key positive regulator of HIF-1α in hypoxia. We propose that the significant reduction of HIF-1α activity in mesothelioma cells carrying biallelic BAP1 mutations, accompanied by the significant reduction of HIF-1α activity in hypoxic tissues containing germline BAP1 mutations, contributes to the reduced aggressiveness and improved survival of mesotheliomas developing in carriers of germline BAP1 mutations.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Mesotelioma Maligno , Mesotelioma , Ubiquitina Tiolesterase , Humanos , Heterozigoto , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Mesotelioma/genética , Mesotelioma/metabolismo , Mesotelioma Maligno/genética , Mesotelioma Maligno/complicações , Mutação , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo
6.
PLoS Biol ; 19(12): e3001480, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34914695

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) cause autosomal dominant Parkinson disease (PD), while polymorphic LRRK2 variants are associated with sporadic PD. PD-linked mutations increase LRRK2 kinase activity and induce neurotoxicity in vitro and in vivo. The small GTPase Rab8a is a LRRK2 kinase substrate and is involved in receptor-mediated recycling and endocytic trafficking of transferrin, but the effect of PD-linked LRRK2 mutations on the function of Rab8a is poorly understood. Here, we show that gain-of-function mutations in LRRK2 induce sequestration of endogenous Rab8a to lysosomes in overexpression cell models, while pharmacological inhibition of LRRK2 kinase activity reverses this phenotype. Furthermore, we show that LRRK2 mutations drive association of endocytosed transferrin with Rab8a-positive lysosomes. LRRK2 has been nominated as an integral part of cellular responses downstream of proinflammatory signals and is activated in microglia in postmortem PD tissue. Here, we show that iPSC-derived microglia from patients carrying the most common LRRK2 mutation, G2019S, mistraffic transferrin to lysosomes proximal to the nucleus in proinflammatory conditions. Furthermore, G2019S knock-in mice show a significant increase in iron deposition in microglia following intrastriatal LPS injection compared to wild-type mice, accompanied by striatal accumulation of ferritin. Our data support a role of LRRK2 in modulating iron uptake and storage in response to proinflammatory stimuli in microglia.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Proteínas rab de Ligação ao GTP/metabolismo , Idoso , Animais , Transporte Biológico , Corpo Estriado , Mutação com Ganho de Função/genética , Células HEK293 , Humanos , Ferro/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia , Pessoa de Meia-Idade , Mutação , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases , Transferrina/metabolismo , Transferrinas/genética , Transferrinas/metabolismo , Proteínas rab de Ligação ao GTP/genética
7.
Int J Cancer ; 152(2): 267-275, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36005450

RESUMO

The pertuzumab study in the neoadjuvant setting for HER2+ nonmetastatic breast cancer in Australia (PeRSIA-ML39622) is an analysis of safety and effectiveness data from the pertuzumab patient registry. Although the prognosis of patients with early stage HER2+ breast cancer has been greatly improved by advances in chemotherapy approximately 25% to 30% of patients develop recurrent disease. Our study aimed to examine the effectiveness of neoadjuvant pertuzumab on surgical outcomes, describe the medium-term effectiveness outcomes of patients treated with pertuzumab, and describe the planned and actual anticancer treatment regimens that patients received. Deidentified data were collected from the patients' medical records and entered into REDCap, between March 2018 and July 2019 (n = 95). The adverse events (AEs) reported most frequently were diarrhea (20; 21.1%), rash (4; 4.2%), and LVSD (4; 4.2%; two patients during neoadjuvant treatment and two patients during adjuvant treatment). AEs, ≥Grade 3 were diarrhea (2; 2.1%) and LVSD (1; 1.1%). Following surgery, a breast pathological complete response (bpCR) was achieved in 65 patients (70.7%; 95% CI: 60.2%-79.7%) and total pathological complete response (tpCR) in 59 patients (64.1%; 95% CI: 53.4%-73.9%). All patients who did not achieve a tpCR obtained a partial response (33/92, 35.9%). Our study is the first to capture real-world data on the use of pertuzumab in the neoadjuvant setting in Australia. The effectiveness and safety data are consistent with those reported in clinical trials of pertuzumab in patients with HER2+ breast cancer, with no new safety concerns.


Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Pérsia , Austrália , Diarreia/induzido quimicamente
8.
Cell Commun Signal ; 21(1): 76, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055829

RESUMO

Androgen deprivation therapy (ADT) is a standard therapy for prostate cancer (PCa). Though disseminated disease is initially sensitive to ADT, an important fraction of the patients progresses to castration-resistant prostate cancer (CRPC). For this reason, the identification of novel effective therapies for treating CRPC is needed. Immunotherapeutic strategies focused on macrophages as antitumor effectors, directly enhancing their tumoricidal potential at the tumor microenvironment or their adoptive transfer after ex vivo activation, have arisen as promising therapies in several cancer types. Despite several approaches centered on the activation of tumor-associated macrophages (TAMs) in PCa are under investigation, to date there is no evidence of clinical benefit in patients. In addition, the evidence of the effectiveness of macrophage adoptive transfer on PCa is poor. Here we find that VSSP, an immunomodulator of the myeloid system, decreases TAMs and inhibits prostatic tumor growth when administered to castrated Pten-deficient prostate tumor-bearing mice. In mice bearing castration-resistant Ptenpc-/-; Trp53pc-/- tumors, VSSP administration showed no effect. Nevertheless, adoptive transfer of macrophages activated ex vivo with VSSP inhibited Ptenpc-/-; Trp53pc-/- tumor growth through reduction of angiogenesis and tumor cell proliferation and induction of senescence. Taken together, our results highlight the rationale of exploiting macrophage functional programming as a promising strategy for CRPC therapy, with particular emphasis on ex vivo-activated proinflammatory macrophage adoptive transfer. Video abstract.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Camundongos , Animais , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Antagonistas de Androgênios/farmacologia , Macrófagos , Próstata/patologia , Proliferação de Células , Linhagem Celular Tumoral , Microambiente Tumoral
9.
Nature ; 546(7659): 549-553, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28614305

RESUMO

BRCA1-associated protein 1 (BAP1) is a potent tumour suppressor gene that modulates environmental carcinogenesis. All carriers of inherited heterozygous germline BAP1-inactivating mutations (BAP1+/-) developed one and often several BAP1-/- malignancies in their lifetime, mostly malignant mesothelioma, uveal melanoma, and so on. Moreover, BAP1-acquired biallelic mutations are frequent in human cancers. BAP1 tumour suppressor activity has been attributed to its nuclear localization, where it helps to maintain genome integrity. The possible activity of BAP1 in the cytoplasm is unknown. Cells with reduced levels of BAP1 exhibit chromosomal abnormalities and decreased DNA repair by homologous recombination, indicating that BAP1 dosage is critical. Cells with extensive DNA damage should die and not grow into malignancies. Here we discover that BAP1 localizes at the endoplasmic reticulum. Here, it binds, deubiquitylates, and stabilizes type 3 inositol-1,4,5-trisphosphate receptor (IP3R3), modulating calcium (Ca2+) release from the endoplasmic reticulum into the cytosol and mitochondria, promoting apoptosis. Reduced levels of BAP1 in BAP1+/- carriers cause reduction both of IP3R3 levels and of Ca2+ flux, preventing BAP1+/- cells that accumulate DNA damage from executing apoptosis. A higher fraction of cells exposed to either ionizing or ultraviolet radiation, or to asbestos, survive genotoxic stress, resulting in a higher rate of cellular transformation. We propose that the high incidence of cancers in BAP1+/- carriers results from the combined reduced nuclear and cytoplasmic activities of BAP1. Our data provide a mechanistic rationale for the powerful ability of BAP1 to regulate gene-environment interaction in human carcinogenesis.


Assuntos
Cálcio/metabolismo , Transformação Celular Neoplásica , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocôndrias/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo , Apoptose/genética , Amianto/toxicidade , Sinalização do Cálcio , Núcleo Celular/metabolismo , Sobrevivência Celular , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos da radiação , Células Cultivadas , Dano ao DNA , Epitélio , Fibroblastos , Interação Gene-Ambiente , Humanos , Ligação Proteica , Estabilidade Proteica , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Ubiquitina/metabolismo , Ubiquitina Tiolesterase/deficiência , Ubiquitina Tiolesterase/genética
10.
Int J Mol Sci ; 22(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067060

RESUMO

Recent findings suggest that epithelial to mesenchymal transition (EMT), a key step during heart development, is involved in cardiac tissue repair following myocardial infarction (MI). MicroRNAs (miRNAs) act as key regulators in EMT processes; however, the mechanisms by which miRNAs target epicardial EMT remain largely unknown. Here, by using an in vitro model of epicardial EMT, we investigated the role of miRNAs as regulators of this process and their potential targets. EMT was induced in murine epicardial-mesothelial cells (EMCs) through TGF ß1 treatment for 48, 72, and 96 h as indicated by the expression of EMT-related genes by qRT-PCR, WB, and immunofluorescence. Further, enhanced expression of stemness genes was also detected. Among several EMT-related miRNAs, miR-200c-3p expression resulted as the most strongly suppressed. Interestingly, we also found a significant upregulation of Follistatin-related protein 1 (FSTL1), a miR-200c predicted target already identified as a potent cardiogenic factor produced by epicardial cells that promotes regeneration following MI. Dual-luciferase reporter assay demonstrated that miR-200c-3p directly targeted the 3'-untranslated region of FSTL1 in EMCs. Consistently, WB analysis showed that knockdown of miR-200c-3p significantly increased FSTL1 expression, whereas overexpression of miR-200c-3p counteracted TGF ß1-mediated FSTL1 upregulation. Importantly, FSTL1 silencing maintained epithelial features in EMCs, despite EMT induction by TGF ß1, and attenuated EMT-associated traits, including migration and stemness. In conclusion, epicardial FSTL1, an important cardiogenic factor in its secreted form, induces EMT, stemness, and migration of EMCs in a miR-200c-3p dependent pathway.


Assuntos
Transição Epitelial-Mesenquimal , Epitélio/metabolismo , Proteínas Relacionadas à Folistatina/metabolismo , MicroRNAs/metabolismo , Pericárdio/patologia , Animais , Biomarcadores/metabolismo , Transição Epitelial-Mesenquimal/genética , Feminino , Mesoderma/patologia , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fator de Crescimento Transformador beta1/farmacologia
11.
Neurobiol Dis ; 141: 104948, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32434048

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) are an established cause of inherited Parkinson's disease (PD). LRRK2 is expressed in both neurons and glia in the central nervous system, but its physiological function(s) in each of these cell types is uncertain. Through sequential screens, we report a functional interaction between LRRK2 and Clathrin adaptor protein complex 2 (AP2). Analysis of LRRK2 KO tissue revealed a significant dysregulation of AP2 complex components, suggesting LRRK2 may act upstream of AP2. In line with this hypothesis, expression of LRRK2 was found to modify recruitment and phosphorylation of AP2. Furthermore, expression of LRRK2 containing the R1441C pathogenic mutation resulted in impaired clathrin-mediated endocytosis (CME). A decrease in activity-dependent synaptic vesicle endocytosis was also observed in neurons harboring an endogenous R1441C LRRK2 mutation. Alongside LRRK2, several PD-associated genes intersect with membrane-trafficking pathways. To investigate the genetic association between Clathrin-trafficking and PD, we used polygenetic risk profiling from IPDGC genome wide association studies (GWAS) datasets. Clathrin-dependent endocytosis genes were found to be associated with PD across multiple cohorts, suggesting common variants at these loci represent a cumulative risk factor for disease. Taken together, these findings suggest CME is a LRRK2-mediated, PD relevant pathway.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Endocitose , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson/metabolismo , Animais , Células HEK293 , Humanos , Camundongos , Neurônios/metabolismo , Fosforilação , Vesículas Sinápticas/metabolismo
12.
Hum Mol Genet ; 27(18): 3257-3271, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29917075

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) segregate with familial Parkinson's disease (PD) and genetic variation around LRRK2 contributes to risk of sporadic disease. Although knockout (KO) of Lrrk2 or knock-in of pathogenic mutations into the mouse germline does not result in a PD phenotype, several defects have been reported in the kidneys of Lrrk2 KO mice. To understand LRRK2 function in vivo, we used an unbiased approach to determine which protein pathways are affected in LRRK2 KO kidneys. We nominated changes in cytoskeletal-associated proteins, lysosomal proteases, proteins involved in vesicular trafficking and in control of protein translation. Changes were not seen in mice expressing the pathogenic G2019S LRRK2 mutation. Using cultured epithelial kidney cells, we replicated the accumulation of lysosomal proteases and demonstrated changes in subcellular distribution of the cation-independent mannose-6-phosphate receptor. These results show that loss of LRRK2 leads to co-ordinated responses in protein translation and trafficking and argue against a dominant negative role for the G2019S mutation.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/genética , Biossíntese de Proteínas/genética , Proteômica , Animais , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação da Expressão Gênica , Humanos , Rim/metabolismo , Rim/patologia , Camundongos , Camundongos Knockout , Mutação , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fenótipo , Proteólise , Receptor IGF Tipo 2/genética , Transdução de Sinais
13.
Cell Mol Life Sci ; 74(3): 409-434, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27600680

RESUMO

Cytoskeletal homeostasis is essential for the development, survival and maintenance of an efficient nervous system. Microtubules are highly dynamic polymers important for neuronal growth, morphology, migration and polarity. In cooperation with several classes of binding proteins, microtubules regulate long-distance intracellular cargo trafficking along axons and dendrites. The importance of a delicate interplay between cytoskeletal components is reflected in several human neurodegenerative disorders linked to abnormal microtubule dynamics, including Parkinson's disease (PD). Mounting evidence now suggests PD pathogenesis might be underlined by early cytoskeletal dysfunction. Advances in genetics have identified PD-associated mutations and variants in genes encoding various proteins affecting microtubule function including the microtubule-associated protein tau. In this review, we highlight the role of microtubules, their major posttranslational modifications and microtubule associated proteins in neuronal function. We then present key evidence on the contribution of microtubule dysfunction to PD. Finally, we discuss how regulation of microtubule dynamics with microtubule-targeting agents and deacetylase inhibitors represents a promising strategy for innovative therapeutic development.


Assuntos
Citoesqueleto/patologia , Microtúbulos/patologia , Doença de Parkinson/patologia , Animais , Axônios/metabolismo , Axônios/patologia , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/genética , Citoesqueleto/metabolismo , Descoberta de Drogas , Humanos , Proteínas Associadas aos Microtúbulos/análise , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/efeitos dos fármacos , Microtúbulos/genética , Microtúbulos/metabolismo , Terapia de Alvo Molecular , Mutação , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/análise , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Proteínas tau/análise , Proteínas tau/genética , Proteínas tau/metabolismo
14.
J Cell Physiol ; 232(7): 1835-1844, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27925196

RESUMO

Sirtuins are conserved NAD+ -dependent deacylases. SIRT1 is a nuclear and cytoplasmic sirtuin involved in the control of histones a transcription factors function. SIRT3 is a mitochondrial protein, which regulates mitochondrial function. Although, both SIRT1 and SIRT3 have been implicated in resistance to cellular stress, the link between these two sirtuins has not been studied so far. Here we aimed to unravel: i) the role of SIRT1-SIRT3 axis for cellular response to oxidative stress and DNA damage; ii) how mammalian cells modulate such SIRT1-SIRT3 axis and which mechanisms are involved. Therefore, we analyzed the response to different stress stimuli in WT or SIRT1-silenced cell lines. Our results demonstrate that SIRT1-silenced cells are more resistant to H2 O2 and etoposide treatment showing decreased ROS accumulation, γ-H2AX phosphorylation, caspase-3 activation and PARP cleavage. Interestingly, we observed that SIRT1-silenced cells show an increased SIRT3 expression. To explore such a connection, we carried out luciferase assays on SIRT3 promoter demonstrating that SIRT1-silencing increases SIRT3 promoter activity and that such an effect depends on the presence of SP1 and ZF5 recognition sequences on SIRT3 promoter. Afterwards, we performed co-immunoprecipitation assays demonstrating that SIRT1 binds and deacetylates the transcription inhibitor ZF5 and that there is a decreased interaction between SP1 and ZF5 in SIRT1-silenced cells. Therefore, we speculate that acetylated ZF5 cannot bind and sequester SP1 that is free, then, to increase SIRT3 transcription. In conclusion, we demonstrate that cells with low SIRT1 levels can maintain their resistance and survival by increasing SIRT3 expression. J. Cell. Physiol. 232: 1835-1844, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Etoposídeo/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Sirtuína 3/metabolismo , Acetilação/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Citoproteção/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Espaço Intracelular/metabolismo , Camundongos , Modelos Biológicos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição Sp1/metabolismo
15.
J Transl Med ; 15(1): 58, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28298211

RESUMO

BACKGROUND: Malignant mesothelioma (MM) is a very aggressive type of cancer, with a dismal prognosis and inherent resistance to chemotherapeutics. Development and evaluation of new therapeutic approaches is highly needed. Immunosuppressant FTY720, approved for multiple sclerosis treatment, has recently raised attention for its anti-tumor activity in a variety of cancers. However, its therapeutic potential in MM has not been evaluated yet. METHODS: Cell viability and anchorage-independent growth were evaluated in a panel of MM cell lines and human mesothelial cells (HM) upon FTY720 treatment to assess in vitro anti-tumor efficacy. The mechanism of action of FTY720 in MM was assessed by measuring the activity of phosphatase protein 2A (PP2A)-a major target of FTY720. The binding of the endogenous inhibitor SET to PP2A in presence of FTY720 was evaluated by immunoblotting and immunoprecipitation. Signaling and activation of programmed cell death were evaluated by immunoblotting and flow cytometry. A syngeneic mouse model was used to evaluate anti-tumor efficacy and toxicity profile of FTY720 in vivo. RESULTS: We show that FTY720 significantly suppressed MM cell viability and anchorage-independent growth without affecting normal HM cells. FTY720 inhibited the phosphatase activity of PP2A by displacement of SET protein, which appeared overexpressed in MM, as compared to HM cells. FTY720 promoted AKT dephosphorylation and Bcl-2 degradation, leading to induction of programmed cell death, as demonstrated by caspase-3 and PARP activation, as well as by cytochrome c and AIF intracellular translocation. Moreover, FTY720 administration in vivo effectively reduced tumor burden in mice without apparent toxicity. CONCLUSIONS: Our preclinical data indicate that FTY720 is a potentially promising therapeutic agent for MM treatment.


Assuntos
Cloridrato de Fingolimode/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Mesotelioma/tratamento farmacológico , Mesotelioma/patologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/toxicidade , Mesotelioma Maligno , Camundongos , Proteína Fosfatase 2/metabolismo , Proteínas Supressoras de Tumor/metabolismo
16.
J Toxicol Environ Health B Crit Rev ; 19(5-6): 213-230, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27705545

RESUMO

Similar to asbestos fibers, nonregulated mineral fibers can cause malignant mesothelioma (MM). Recently, increased proportions of women and young individuals with MM were identified in southern Nevada, suggesting that environmental exposure to carcinogenic fibers was causing the development of MM. Palygorskite, a fibrous silicate mineral with a history of possible carcinogenicity, is abundant in southern Nevada. In this study, our aim was to determine whether palygorskite was contributing to the development of MM in southern Nevada. While palygorskite, in vitro, displayed some cytotoxicity toward primary human mesothelial (HM) cells and reduced their viability, the effects were roughly half of those observed when using similar amounts of crocidolite asbestos. No Balb/c (0/19) or MexTAg (0/18) mice injected with palygorskite developed MM, while 3/16 Balb/c and 13/14 MexTAg mice injected with crocidolite did. Lack of MM development was associated with a decreased acute inflammatory response, as injection of palygorskite resulted in lower percentages of macrophages (p = .006) and neutrophils (p = .02) in the peritoneal cavity 3 d after exposure compared to injection of crocidolite. Additionally, compared to mice injected with crocidolite, palygorskite-injected mice had lower percentages of M2 (tumor-promoting) macrophages (p = .008) in their peritoneal cavities when exposed to fiber for several weeks. Our study indicates that palygorskite found in the environment in southern Nevada does not cause MM in mice, seemingly because palygorskite, in vivo, fails to elicit inflammation that is associated with MM development. Therefore, palygorskite is not a likely contributor to the MM cases observed in southern Nevada.


Assuntos
Células Epiteliais/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Compostos de Magnésio/toxicidade , Mesotelioma/patologia , Compostos de Silício/toxicidade , Animais , Células Epiteliais/citologia , Neoplasias Pulmonares/induzido quimicamente , Mesotelioma/induzido quimicamente , Mesotelioma Maligno , Camundongos , Camundongos Endogâmicos BALB C , Nevada
17.
Fluids Barriers CNS ; 21(1): 43, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773599

RESUMO

The European Choroid plexus Scientific Forum (ECSF), held in Heidelberg, Germany between the 7th and 9th of November 2023, involved 21 speakers from eight countries. ECSF focused on discussing cutting-edge fundamental and medical research related to the development and functions of the choroid plexus and its implications for health, aging, and disease, including choroid plexus tumors. In addition to new findings in this expanding field, innovative approaches, animal models and 3D in vitro models were showcased to encourage further investigation into choroid plexus and cerebrospinal fluid roles.


Assuntos
Plexo Corióideo , Humanos , Animais , Líquido Cefalorraquidiano , Europa (Continente) , Neoplasias do Plexo Corióideo
18.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38931477

RESUMO

Cancer cells modulate their metabolism, creating an acidic microenvironment that, in turn, can favor tumor progression and chemotherapy resistance. Tumor cells adopt strategies to survive a drop in extracellular pH (pHe). In the present manuscript, we investigated the contribution of mitochondrial sirtuin 3 (SIRT3) to the adaptation and survival of cancer cells to a low pHe. SIRT3-overexpressing and silenced breast cancer cells MDA-MB-231 and human embryonic kidney HEK293 cells were grown in buffered and unbuffered media at pH 7.4 and 6.8 for different times. mRNA expression of SIRT3 and CAVB, was measured by RT-PCR. Protein expression of SIRT3, CAVB and autophagy proteins was estimated by western blot. SIRT3-CAVB interaction was determined by immunoprecipitation and proximity ligation assays (PLA). Induction of autophagy was studied by western blot and TEM. SIRT3 overexpression increases the survival of both cell lines. Moreover, we demonstrated that SIRT3 controls intracellular pH (pHi) through the regulation of mitochondrial carbonic anhydrase VB (CAVB). Interestingly, we obtained similar results by using MC2791, a new SIRT3 activator. Our results point to the possibility of modulating SIRT3 to decrease the response and resistance of tumor cells to the acidic microenvironment and ameliorate the effectiveness of anticancer therapy.

19.
J Cell Physiol ; 228(8): 1754-61, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23359486

RESUMO

The following study demonstrated that, in in vitro differentiated neurons, SIRT1 silencing induced an increase of IGF-1 protein expression and secretion and of IGF-1R protein levels which, in turn, prolonged neuronal cell survival in presence of an apoptotic insult. On the contrary, SIRT1 overexpression increased cell death. In particular, IGF-1 and IGF-1R expression levels were negatively regulated by SIRT1. In SIRT1 silenced cells, the increase in IGF-1 and IGF-1R expression was associated to an increase in AKT and ERK1/2 phosphorylation. Moreover, neuronal differentiation was reduced in SIRT1 overexpressing cells and increased in SIRT1 silenced cells. We conclude that SIRT1 silenced neurons appear more committed to differentiation and more resistant to cell death through the activation of IGF-1 survival pathway.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Transdução de Sinais , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética , Animais , Morte Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Sobrevivência Celular , Regulação para Baixo/genética , Camundongos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores , RNA Interferente Pequeno/genética , Ratos , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/genética , Regulação para Cima/genética
20.
Cell Stem Cell ; 30(10): 1351-1367.e10, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802039

RESUMO

Progression through fate decisions determines cellular composition and tissue architecture, but how that same architecture may impact cell fate is less clear. We took advantage of organoids as a tractable model to interrogate this interaction of form and fate. Screening methodological variations revealed that common protocol adjustments impacted various aspects of morphology, from macrostructure to tissue architecture. We examined the impact of morphological perturbations on cell fate through integrated single nuclear RNA sequencing (snRNA-seq) and spatial transcriptomics. Regardless of the specific protocol, organoids with more complex morphology better mimicked in vivo human fetal brain development. Organoids with perturbed tissue architecture displayed aberrant temporal progression, with cells being intermingled in both space and time. Finally, encapsulation to impart a simplified morphology led to disrupted tissue cytoarchitecture and a similar abnormal maturational timing. These data demonstrate that cells of the developing brain require proper spatial coordinates to undergo correct temporal progression.


Assuntos
Encéfalo , Organoides , Humanos , Diferenciação Celular , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA