Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 21(1): e3001971, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689462

RESUMO

Neurons tightly regulate firing rate and a failure to do so leads to multiple neurological disorders. Therefore, a fundamental question in neuroscience is how neurons produce reliable activity patterns for decades to generate behavior. Neurons have built-in feedback mechanisms that allow them to monitor their output and rapidly stabilize firing rate. Most work emphasizes the role of a dominant feedback system within a neuronal population for the control of moment-to-moment firing. In contrast, we find that respiratory motoneurons use 2 activity-dependent controllers in unique combinations across cells, dynamic activation of an Na+ pump subtype, and rapid potentiation of Kv7 channels. Both systems constrain firing rate by reducing excitability for up to a minute after a burst of action potentials but are recruited by different cellular signals associated with activity, increased intracellular Na+ (the Na+ pump), and membrane depolarization (Kv7 channels). Individual neurons do not simply contain equal amounts of each system. Rather, neurons under strong control of the Na+ pump are weakly regulated by Kv7 enhancement and vice versa along a continuum. Thus, each motoneuron maintains its characteristic firing rate through a unique combination of the Na+ pump and Kv7 channels, which are dynamically regulated by distinct feedback signals. These results reveal a new organizing strategy for stable circuit output involving multiple fast activity sensors scaled inversely across a neuronal population.


Assuntos
Neurônios Motores , Retroalimentação , Potenciais de Ação/fisiologia , Neurônios Motores/fisiologia
2.
Arthritis Rheumatol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589317

RESUMO

OBJECTIVE: Erythropoietin-producing hepatocellular (Eph)/Ephrin cell-cell signaling is emerging as a key player in tissue fibrogenesis. The aim of this study was to test the hypothesis that the receptor tyrosine kinase EphB2 mediates dermal fibrosis in systemic sclerosis (SSc). METHODS: We assessed normal and SSc human skin biopsies for EphB2 expression. The in vivo role of EphB2 in skin fibrosis was investigated by subjecting EphB2-knockout mice to both bleomycin-induced and tight skin (Tsk1/+) genetic mouse models of skin fibrosis. EphB2 kinase-dead and overactive point mutant mice were used to evaluate the role of EphB2 forward signaling in bleomycin-induced dermal fibrosis. In vitro studies were performed on dermal fibroblasts from patients with SSc and healthy controls, which was followed by in vivo analysis of fibroblast-specific Ephb2-deficient mice. RESULTS: Expression of EphB2 is up-regulated in SSc skin tissue and explanted SSc dermal fibroblasts compared with healthy controls. EphB2 expression is elevated in two animal models of dermal fibrosis. In mice, EphB2 drives dermal fibrosis in both the bleomycin and the Tsk1/+ models of skin fibrosis. EphB2 forward signaling is a critical mediator of dermal fibrosis. Transforming growth factor-ß (TGF-ß) cytokines up-regulate EphB2 in dermal fibroblasts via noncanonical TGF-ß/mother against decapentaplegic signaling, and silencing EPHB2 in human dermal fibroblasts is sufficient to dampen TGF-ß-induced fibroblast-to-myofibroblast differentiation. Moreover, mice with fibroblast-specific deletion of EphB2 showed impaired fibroblast-to-myofibroblast differentiation and reduced skin fibrosis upon bleomycin challenge. CONCLUSION: Our data implicate TGF-ß regulation of EphB2 overexpression and kinase-mediated forward signaling in the development of dermal fibrosis in SSc. EphB2 thus represents a potential new therapeutic target for SSc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA