Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genet Mol Biol ; 39(3): 349-57, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27561113

RESUMO

Deletion-induced hemizygosity may unmask deleterious autosomal recessive variants and be a cause of the phenotypic variability observed in microdeletion syndromes. We performed complete exome sequencing (WES) analysis to examine this possibility in a patient with 1p13.2 microdeletion. Since the patient displayed clinical features suggestive of Noonan Syndrome (NS), we also used WES to rule out the presence of pathogenic variants in any of the genes associated with the different types of NS. We concluded that the clinical findings could be attributed solely to the 1p13.2 haploinsufficiency. Retrospective analysis of other nine reported patients with 1p13.2 microdeletions showed that six of them also presented some characteristics of NS. In all these cases, the deleted segment included the NRAS gene. Gain-of-function mutations of NRAS gene are causally related to NS type 6. Thus, it is conceivable that NRAS haploinsufficiency and gain-of-function mutations may have similar clinical consequences. The same phenomenon has been described for two other genes belonging to the Ras/MAPK pathway: MAP2K2 and SHOC2. In conclusion, we here report genotype-phenotype correlations in patients with chromosome 1p13.2 microdeletions and we propose that NRAS may be a critical gene for the NS characteristics in the patients.

2.
Front Genet ; 12: 685123, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759951

RESUMO

Genetic studies performed in consanguineous couples suggest that the reproductive risk that distinguish them from other couples in the general population is related to autosomal recessive (AR) diseases. This risk is scattered among the thousands of known and potential AR diseases. Thus, for effective preconceptional screening of consanguineous couples it is necessary a test that encompasses the largest number of genes possible. For that reason, we decided to create a protocol based on whole exome sequencing (WES). We sequenced completely the exomes of 39 consanguineous couples at high coverage (∼100×). Applying bioinformatics filters, we could detect genetic variants that were simultaneously present in both members of the couple in all genes listed in the Clinical Genomics Database as causally related to AR diseases. Shared variants were then assessed for pathogenicity. For non-truncating variants (missense and in-frame indels) we considered as pathogenic or likely pathogenic only the variants included as such in the ClinVar database. Shared truncating variants (frameshift, non-sense, and canonical splice variants) were considered likely pathogenic when loss-of-function was a known mechanism of disease. The 39 consanguineous cases included two couples with a coefficient of genetic relationship (CGR) of 0.25, 26 couples with a CGR of 0.125, three couples with a CGR of 0.0625 and eight couples with a CGR of 0.03125. In 21 of the 39 couples (53.8%) we ascertained sharing of heterozygosity for at least one variant considered pathogenic or likely pathogenic for an AR disease. In eight couples we found sharing of heterozygosity for at least two pathogenic variants. Once the specific pathogenic variant was identified, it became possible for the couple to undergo prenatal diagnosis or, if desired, preimplantation genetic diagnosis (PGD) involving in vitro fertilization and embryo screening. In conclusion, our results demonstrate that preconceptional screening by WES is a useful new procedure that should be incorporated in the genetic counseling of all consanguineous couples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA