Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Chem Biodivers ; 21(6): e202301477, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38415906

RESUMO

Alkaloids are natural products that occur widely in many herbal plants. Anisodamine, widely present in the Solanaceae family, is an alkaloid extracted from the roots of the Anisodus tanguticus Maxim. It is an antagonist to M-choline receptors and exhibits diverse pharmacological effects, such as cholinolytic effect, calcium antagonist effect, anti-oxygenation effect. Anisodamine, a prominent constituent of the tropine alkaloid family, exhibits a range of pharmacological effects akin to those of atropine and scopolamine. owing to its low toxicity and moderate efficacy in clinical to wide applications, especially for varieties of shock treatment. However, there remains a dearth of research regarding the in vivo pharmacokinetics, mechanism of action, and toxicity of anisodamine. Consequently, this paper provides a comprehensive review of the anti-shock effects, toxicity, and pharmacokinetic characteristics of anisodamine to increase the understanding of its medicinal value, and provide reference and inspiration for the clinical application and further in-depth research of anisodamine.


Assuntos
Alcaloides de Solanáceas , Alcaloides de Solanáceas/química , Alcaloides de Solanáceas/farmacologia , Alcaloides de Solanáceas/farmacocinética , Humanos , Animais , Solanaceae/química , Choque/tratamento farmacológico , Choque/metabolismo
2.
Int J Mol Sci ; 25(16)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39201623

RESUMO

Environmental variations initiate chromatin modifications, leading to the exchange of histone subunits or the repositioning of nucleosomes. The phosphorylated histone variant H2A.X (γH2A.X) is recognized for the formation of foci that serve as established markers of DNA double-strand breaks (DSBs). Nevertheless, the precise roles of H2A.X in the cellular response to genotoxic stress and the impact of the plant hormone abscisic acid (ABA) remain incompletely understood. In this investigation, we implemented CRISPR/Cas9 technology to produce loss-of-function mutants of AtHTA3 and AtHTA5 in Arabidopsis. The phenotypes of the athta3 and athta5 single mutants were nearly identical to those of the wild-type Col-0. Nevertheless, the athta3 athta5 double mutants exhibited aberrant embryonic development, increased sensitivity to DNA damage, and higher sensitivity to ABA. The RT-qPCR analysis indicates that AtHTA3 and AtHTA5 negatively regulate the expression of AtABI3, a fundamental regulator in the ABA signaling pathway. Subsequent investigation demonstrated that AtABI3 participates in the genotoxic stress response by influencing the expression of DNA damage response genes, such as AtBRCA1, AtRAD51, and AtWEE1. Our research offers new insights into the role of H2A.X in the genotoxic and ABA responses of Arabidopsis.


Assuntos
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Dano ao DNA , Regulação da Expressão Gênica de Plantas , Histonas , Transdução de Sinais , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Mutação
3.
Ecotoxicol Environ Saf ; 171: 12-25, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30593996

RESUMO

Soil salinity is a major abiotic stress affecting crop growth and productivity. Ricinus communis has good salt tolerance and is also an important oilseed crop throughout the world. Early seedling stage (such as cotyledon expansion stage) is the most vulnerable period for plant under stresses. However, little information exist concerning the physiological and molecular mechanisms of Ricinus communis seedlings and the role play by cotyledons and true leaf under salt stress. In the present study, biomass, photosynthesis, chlorophyll fluorescence, inorganic ions and organic solutes contents were measured, and two dimensional gel electrophoresis-based proteomic technology was employed to identify the differentially abundant proteins in the salt-treated Ricinus communis cotyledons and true leaves. The results showed that salt stress reduced growth and photosynthesis in the seedlings. With increasing salinity, the Na+ content increased and K+ content decreased in both cotyledons and leaves, but the true leaves had lower Na+ and higher K+ contents. Soluble sugars and proline are the primary organic solutes to cope with osmotic stress. In addition, proteomic analysis revealed 30 and 42 differentially accumulated protein spots in castor cotyledon and true leaf under salt stress, respectively. Most of the identified proteins were involved in carbohydrate and energy metabolism, photosynthesis, genetic information process, reactive oxygen species metabolism, amino acid metabolism and cell structure. The physiological and proteomic results highlighted that cotyledons accumulated a large number of Na+ and provided more energy to help true leaves cope with salt stress. The true leaves saved carbon structures to synthesize osmotic substances, and the enhancement of chlorophyll synthesis and electron transfer in true leaves could also maintain photosynthesis under salt stress. These findings provide new insights into different physiological mechanisms in cotyledon and true leaf of Ricinus communis response to salt stress during early seedling stage.


Assuntos
Cotilédone/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Ricinus , Salinidade , Tolerância ao Sal , Plântula/metabolismo , Biomassa , Metabolismo Energético , Pressão Osmótica/fisiologia , Fotossíntese , Potássio/metabolismo , Prolina/metabolismo , Proteômica , Plântula/crescimento & desenvolvimento , Sódio/metabolismo , Cloreto de Sódio/análise
4.
Injury ; 55(4): 111385, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359710

RESUMO

Pilon fractures represent a challenging subset of tibial fractures. The management of AO/OTA Type C3 fractures remains complex due to associated complications and lack of clear guidelines for surgical timing and methods. A prospective cohort study was conducted to evaluate two staged treatment strategies for AO/OTA Type C3 tibial pilon fractures. The study focused on assessing surgical difficulty, complications, and patient prognosis. One group of patients received early internal fixation of the fibula and tibial posterior column combined with external fixation, while the other group received external fixation alone in the first stage. Patients who received early internal fixation of the fibula and tibial posterior column combined with external fixation had better outcomes, including lower rate of allogeneic bone grafting (67.74 % versus 94.64 %), reduced incidence of wound delay and skin necrosis (3.23 % versus 21.43 %), shorter surgical time (133.06 ± 23.99 min versus 163.04 ± 26.83 min), shorter hospital stay (13.77 ± 2.53 days versus 18.25 ± 3.67 days), and higher AOFAS (83.05 ± 8.68 versus 79.36 ± 8.92). Additionally, avoiding fibular shortening was shown to be crucial in preventing prolonged surgery and improving patient function. The study demonstrated that the staged treatment approach with early internal fixation led to shorter operative times, improved ankle function, and reduced complications, including a lower risk of infection. The findings support the use of this treatment to optimize outcomes in AO/OTA Type C3 pilon fractures.


Assuntos
Fraturas do Tornozelo , Traumatismos do Tornozelo , Fraturas da Tíbia , Humanos , Estudos Prospectivos , Resultado do Tratamento , Traumatismos do Tornozelo/cirurgia , Fraturas da Tíbia/diagnóstico por imagem , Fraturas da Tíbia/cirurgia , Fixação Interna de Fraturas/métodos , Fraturas do Tornozelo/diagnóstico por imagem , Fraturas do Tornozelo/cirurgia , Estudos Retrospectivos , Fixação de Fratura
5.
Heliyon ; 10(5): e26732, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38449666

RESUMO

Ganoderma lucidum polysaccharides (G. PS) have been recognized for their immune-modulating properties. In this study, we investigated the impact of G. PS in a sepsis mouse model, exploring its effects on survival, inflammatory cytokines, Treg cell differentiation, bacterial load, organ dysfunction, and related pathways. We also probed the role of macrophages through chlorphosphon-liposome pretreatment. Using the cecal ligation and puncture (CLP) model, we categorized mice into normal, PBS, and G. PS injection groups. G. PS significantly enhanced septic mouse survival, regulated inflammatory cytokines (TNF-α, IL-17A, IL-6, IL-10), and promoted CD4+Foxp3+ Treg cell differentiation in spleens. Additionally, G. PS reduced bacterial load, mitigated organ damage, and suppressed the NF-κB pathway. In vitro, G. PS facilitated CD4+ T cell differentiation into Treg cells via the p-STAT5 pathway. Chlorphosphon-liposome pretreatment heightened septic mortality, bacterial load, biochemical markers, and organ damage, emphasizing macrophages' involvement. G. PS demonstrated significant protective effects in septic mice by modulating inflammatory responses, enhancing Treg cell differentiation, diminishing bacterial load, and inhibiting inflammatory pathways. These findings illuminate the therapeutic potential of G. PS in sepsis treatment.

6.
Rice (N Y) ; 17(1): 10, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252225

RESUMO

B-cell lymphoma 2 (Bcl-2)-associated athanogene (BAG) family genes play prominent roles in regulating plant growth, development, and stress response. Although the molecular mechanism underlying BAG's response to abiotic stress has been studied in Arabidopsis, the function of OsBAG underlying saline-alkaline stress tolerance in rice remains unclear. In this study, OsBAG6, a chaperone regulator localized to mitochondria, was identified as a novel negative regulator of saline-alkaline stress tolerance in rice. The expression level of OsBAG6 was induced by high concentration of salt, high pH, heat and abscisic acid treatments. Overexpression of OsBAG6 in rice resulted in significantly reduced plant heights, grain size, grain weight, as well as higher sensitivity to saline-alkaline stress. By contrast, the osbag6 loss-of-function mutants exhibited decreased sensitivity to saline-alkaline stress. The transcriptomic analysis uncovered differentially expressed genes related to the function of "response to oxidative stress", "defense response", and "secondary metabolite biosynthetic process" in the shoots and roots of OsBAG6-overexpressing transgenic lines. Furthermore, cytoplasmic levels of Ca2+ increase rapidly in plants exposed to saline-alkaline stress. OsBAG6 bound to calcium sensor OsCaM1-1 under normal conditions, which was identified by comparative interactomics, but not in the presence of elevated Ca2+. Released OsCaM1-1 saturated with Ca2+ is then able to regulate downstream stress-responsive genes as part of the response to saline-alkaline stress. OsBAG6 also interacted with energy biosynthesis and metabolic pathway proteins that are involved in plant growth and saline-alkaline stress response mechanisms. This study reveals a novel function for mitochondrial localized OsBAG6 proteins in the saline-alkaline stress response alongside OsCaM1-1.

7.
Nat Commun ; 15(1): 5094, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877020

RESUMO

Interactions between osteolineage cells and myeloid cells play important roles in maintaining skeletal homeostasis. Herein, we find that osteolineage cells transfer mitochondria to myeloid cells. Impairment of the transfer of mitochondria by deleting MIRO1 in osteolineage cells leads to increased myeloid cell commitment toward osteoclastic lineage cells and promotes bone resorption. In detail, impaired mitochondrial transfer from osteolineage cells alters glutathione metabolism and protects osteoclastic lineage cells from ferroptosis, thus promoting osteoclast activities. Furthermore, mitochondrial transfer from osteolineage cells to myeloid cells is involved in the regulation of glucocorticoid-induced osteoporosis, and glutathione depletion alleviates the progression of glucocorticoid-induced osteoporosis. These findings reveal an unappreciated mechanism underlying the interaction between osteolineage cells and myeloid cells to regulate skeletal metabolic homeostasis and provide insights into glucocorticoid-induced osteoporosis progression.


Assuntos
Reabsorção Óssea , Ferroptose , Mitocôndrias , Células Mieloides , Osteoclastos , Osteoporose , Animais , Mitocôndrias/metabolismo , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Osteoclastos/metabolismo , Células Mieloides/metabolismo , Osteoporose/metabolismo , Osteoporose/patologia , Camundongos , Glucocorticoides/metabolismo , Glutationa/metabolismo , Camundongos Endogâmicos C57BL , Diferenciação Celular , Camundongos Knockout , Humanos , Masculino
8.
iScience ; 27(9): 110597, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39220257

RESUMO

Articular cartilage degeneration may lead to osteoarthritis (OA) during the aging process, but its underlying mechanism remains unknown. Here, we found that chondrocytes exhibited an energy metabolism shift from glycolysis to oxidative phosphorylation (OXPHOS) during aging. Parkin regulates various cellular metabolic processes. Reprogrammed cartilage metabolism by Parkin ablation decreased OXPHOS and increased glycolysis, with ameliorated aging-related OA. Metabolomics analysis indicated that lauroyl-L-carnitine (LLC) was decreased in aged cartilage, but increased in Parkin-deficient cartilage. In vitro, LLC improved the cartilage matrix synthesis of aged chondrocytes. In vivo, intra-articular injection of LLC in mice with anterior cruciate ligament transaction (ACLT) ameliorated OA progression. These results suggest that metabolic changes are regulated by Parkin-impaired cartilage during aging, and targeting this metabolomic changes by supplementation with LLC is a promising treatment strategy for ameliorating OA.

9.
Sci China Life Sci ; 66(12): 2922-2934, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924467

RESUMO

Soil salinity severely limits crop yields and quality. Plants have evolved several strategies to mitigate the adverse effects of salinity, including redistribution and compartmentalization of toxic ions using ion-specific transporters. However, the mechanisms underlying the regulation of these ion transporters have not been fully elucidated. Loss-of-function mutants of OsHKT2;1, which is involved in sodium uptake, exhibit strong salt stress-resistant phenotypes. In this study, OsHKT2;1 was identified as a transcriptional target of the type-B response regulator OsRR22. Loss-of-function osrr22 mutants showed resilience to salt stress, and OsRR22-overexpression plants were sensitive to salt stress. OsRR22 was found to activate the expression of OsHKT2;1 by directly binding to the promoter region of OsHKT2;1 via a consensus cis-element of type-B response regulators. Moreover, rice DELLA protein OsSLR1 directly interacted with OsRR22 and functioned as a transcriptional co-activator. This study has uncovered a novel transcriptional regulatory mechanism by which a type-B response regulator controls sodium transport under salinity stress.


Assuntos
Oryza , Oryza/metabolismo , Ativação Transcricional , Transporte Biológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sódio/metabolismo , Sódio/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Salinidade
10.
J Orthop Surg Res ; 17(1): 108, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35184732

RESUMO

OBJECTIVES: Internal fixation with multiple cannulated compression screws is an optional treatment for femoral neck fracture. Recently, fully threaded cannulated compression screws (FTCCS) have been introduced to fix fresh femoral neck fractures (FNF). The purpose of this study was to investigate the effectiveness of FTCCS. PATIENTS AND METHODS: Patients with FNF fixed by multiple FTCCS from February 1st, 2014 to August 31st, 2017 were included in this study. They were followed for at least 12 months postoperatively. Nonunion, osteonecrosis of the femoral head (ONFH), fixation failure, reoperation, and femoral neck shortening (FNS) were used to evaluate the outcomes. Risk factors including age, sex, fracture side, fracture displacement, fracture stability, fixation configuration, and screw numbers were analyzed. RESULTS: A total of 113 patients including 67 males and 46 females with an average age of 48.4 ± 13.4 years were included. The mean duration of follow-up was 27.1 months (range: 12-51 months). The incidence of nonunion, ONFH, fixation failure, and reoperation was 15.9%, 22.1%, 8.8%, and 24.8%, respectively. The rates of nonunion and reoperation were significantly higher in displaced fractures and unstable fractures. And patients with an unstable fracture had a higher risk of internal fixation failure. The median length of FNS was 2.9 mm (interquartile range: 0.9-6.5 mm, range: 0-17.5 mm). Age was a significant risk factor for FNS. CONCLUSIONS: The screw fixation method with FTCCS provided encouraging clinical results which may be a rational choice for the treatment of fresh FNF. Displaced fractures and unstable fractures were attributed to the higher incidence of complications. TRIAL REGISTRATION: ChiCTR, ChiCTR1800017200. Registered 17 July 2018-Retrospectively registered, http: www.chictr.org.cn/showprojen.aspx?proj=29182 .


Assuntos
Parafusos Ósseos , Fraturas do Colo Femoral/cirurgia , Colo do Fêmur/cirurgia , Fixação Interna de Fraturas/métodos , Adulto , Idoso , Feminino , Fraturas do Colo Femoral/diagnóstico por imagem , Colo do Fêmur/diagnóstico por imagem , Fixação Interna de Fraturas/efeitos adversos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Resultado do Tratamento
11.
Front Pharmacol ; 12: 767243, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733165

RESUMO

Osteonecrosis of femoral head (ONFH) is a progressive hip joint disease without disease-modifying treatment. Lacking understanding of the pathophysiological process of ONFH has become the humper to develop therapeutic approach. Serum amyloid A (SAA) is an acute phase lipophilic protein during inflammation and we found that SAA is increased for the first time in the serum of ONFH patients through proteomic studies and quantitatively verified by ELISA. Treating rBMSCs with SAA inhibited the osteogenic differentiation via Wnt/ß-catenin signaling pathway deactivation and enhanced the adipogenic differentiation via MAPK/PPARγ signaling pathway activation. Finally, bilateral critical-sized calvarial-defect rat model which received SAA treated rBMSCs demonstrated reduction of bone formation when compared to untreated rBMSCs implantation control. Hence, SAA is a vital protein in the physiological process of ONFH and can act as a potential therapeutic target to treat ONFH.

12.
Int J Surg ; 69: 84-88, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31362129

RESUMO

BACKGROUND: Previous studies have demonstrated that age, smoking, Tamai's level of amputation, causes of injury and ischemia time were associated with the success rate of digit replantation. The primary objective of this study is to investigate whether mental status including anxiety and depression is associated with the rate of digit replant failure. METHODS: This study included 134 digits from 102 patients who received digital replantation after complete amputation from 1 September 2013 to 1 September 2015. The Zung self-rating anxiety scale (SAS) and the Zung self-rating depression scale (SDS) were used to assess the pre-injury level of anxiety and depression for each patient. All participants were followed up for at least 1 month. Failure was defined as necrosis of replanted finger which required revision amputation or flap cover of the skeleton. RESULTS: Multivariate logistic regression analysis showed that increased level of pre-injury anxiety was an independent risk factor correlated with success rate (odds ratios [OR] = 7.69, 95% confidence interval [CI]: 1.93-30.30) in this series. The relative risk of anxiety group was 4.48 (95% CI: 1.38-14.49) compared to normal group. Digits with double arterial anastomosis in anxiety patients showed a higher survival rate while the number of veins repaired showed no significant effect on survival rate. CONCLUSIONS: Increased level of pre-injury anxiety was an independent risk factors for digit replantation failure. Double arterial anastomosis increased the success rate of replanted digits in anxiety patients.


Assuntos
Ansiedade/complicações , Traumatismos dos Dedos/cirurgia , Reimplante , Adulto , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Falha de Tratamento
13.
Mater Sci Eng C Mater Biol Appl ; 104: 109999, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31499945

RESUMO

Chitosan (CTS) and mesoporous calcium silicate (MCS) have been developed for bone defect healing; however, their bone regeneration capacity still does not satisfy the patients with bone diseases. Gadolinium (Gd) is accumulated in human bones, and plays a beneficial role in regulating cell performance and bone regeneration. We firstly constructed Gd-doped MCS/CTS (Gd-MCS/CTS) scaffolds by a lyophilization technology. The interconnected arrangement of CTS films lead to forming macropores by using ice crystals as templates during the lyophilization procedure, and the Gd-MCS nanoparticles dispersed uniformly on the macropore walls. The biocompatible chemical components and hierarchical pores facilitated the attachment and spreading of rat bone marrow-derived mesenchymal stem cells (rBMSCs). Interestingly, the Gd dopants in the scaffolds effectively activated the Wnt/ß-catenin signaling pathway, resulting in excellent cell proliferation and osteogenic differentiation capacities. The osteogenic-related genes such as alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2) and collagen type1 (COL-1) were remarkably up-regulated by Gd-MCS scaffolds as compared with MCS scaffolds, and their expression levels increased in a positive correlation with Gd doping amounts. Moreover, in vivo rat cranial defect tests further confirmed that Gd-MCS/CTS scaffolds significantly stimulated collagen deposition and new bone formation. The exciting finding suggested the beneficial effects of Gd3+ ions on osteogenic differentiation and new bone regeneration, and Gd-MCS/CTS scaffolds can be employed as a novel platform for bone defect healing.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Compostos de Cálcio/química , Compostos de Cálcio/farmacologia , Quitosana/química , Gadolínio/química , Gadolínio/farmacologia , Silicatos/química , Silicatos/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Materiais Biocompatíveis/química , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Regulação para Cima/efeitos dos fármacos
14.
Biomater Sci ; 7(4): 1565-1573, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30688345

RESUMO

Trace rare earth elements such as lanthanum (La) regulated effectively bone tissue performances; however, the underlying mechanism remains unknown. In order to accelerate bone defects especially in patients with osteoporosis or other metabolic diseases, we firstly constructed lanthanum-doped mesoporous calcium silicate/chitosan (La-MCS/CTS) scaffolds by freeze-drying technology. During the freeze-drying procedure, three-dimensional macropores were produced within the La-MCS/CTS scaffolds by using ice crystals as templates, and the La-MCS nanoparticles were distributed on the macropore walls. The hierarchically porous structures and biocompatible components contributed to the adhesion, spreading and proliferation of rat bone marrow-derived mesenchymal stem cells (rBMSCs), and accelerated the in-growth of new bone tissues. Particularly, the La3+ ions in the bone scaffolds remarkably induced the osteogenic differentiation of rBMSCs via the activation of the TGF signal pathway. A critical-sized calvarial-defect rat model further revealed that the La-MCS/CTS scaffolds significantly promoted new bone regeneration as compared with pure MCS/CTS scaffolds. In conclusion, the La-MCS/CTS scaffold showed the prominent ability in osteogenesis and bone regeneration, which showed its application potential for bone defect therapy.


Assuntos
Osso e Ossos/efeitos dos fármacos , Compostos de Cálcio/farmacologia , Quitosana/farmacologia , Lantânio/farmacologia , Silicatos/farmacologia , Engenharia Tecidual , Animais , Compostos de Cálcio/química , Quitosana/química , Lantânio/química , Tamanho da Partícula , Porosidade , Ratos , Silicatos/química , Propriedades de Superfície
15.
Sci Rep ; 8(1): 7345, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743489

RESUMO

The development of multifunctional biomaterials to repair bone defects after neoplasm removal and inhibit tumor recurrence remained huge clinical challenges. Here, we demonstrate a kind of innovative and multifunctional magnetic mesoporous calcium sillicate/chitosan (MCSC) porous scaffolds, made of M-type ferrite particles (SrFe12O19), mesoporous calcium silicate (CaSiO3) and chitosan (CS), which exert robust anti-tumor and bone regeneration properties. The mesopores in the CaSiO3 microspheres contributed to the drug delivery property, and the SrFe12O19 particles improved photothermal therapy (PTT) conversion efficacy. With the irradiation of NIR laser, doxorubicin (DOX) was rapidly released from the MCSC/DOX scaffolds. In vitro and in vivo tests demonstrated that the MCSC scaffolds possessed the excellent anti-tumor efficacy via the synergetic effect of DOX drug release and hyperthermia ablation. Moreover, BMP-2/Smad/Runx2 pathway was involved in the MCSC scaffolds promoted proliferation and osteogenic differentiation of human bone marrow stromal cells (hBMSCs). Taken together, the MCSC scaffolds have the ability to promote osteogenesis and enhance synergetic photothermal-chemotherapy against osteosarcoma, indicating MCSC scaffolds may have great application potential for bone tumor-related defects.


Assuntos
Compostos de Cálcio/farmacologia , Quitosana/farmacologia , Compostos Férricos/uso terapêutico , Silicatos/farmacologia , Animais , Materiais Biocompatíveis/farmacologia , Neoplasias Ósseas/patologia , Regeneração Óssea/efeitos dos fármacos , Regeneração Óssea/fisiologia , Osso e Ossos/patologia , Compostos de Cálcio/uso terapêutico , Cálcio da Dieta/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Quitosana/uso terapêutico , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Humanos , Hipertermia Induzida , Células-Tronco Mesenquimais , Camundongos , Camundongos Nus , Osteogênese/efeitos dos fármacos , Osteossarcoma/terapia , Porosidade , Silicatos/uso terapêutico , Engenharia Tecidual , Alicerces Teciduais , Ensaios Antitumorais Modelo de Xenoenxerto
16.
RSC Adv ; 8(26): 14500-14509, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-35540780

RESUMO

Nitrogen deposition and soil salinization-alkalization have become major environmental problems throughout the world. Leymus chinensis is the dominant, and considered the most valuable, species for grassland restoration in the Northeast of China. However, little information exists concerning the role of arbuscular mycorrhizal fungi (AMF) in the adaptation of seedlings to the interactive effects of nitrogen and salt-alkali stress, especially from the perspective of osmotic adjustment and ion balance. Experiments were conducted in a greenhouse and Leymus chinensis seedlings were cultivated with NaCl/NaHCO3 under two nitrogen treatments (different concentrations of NH4 +/NO3 -). Root colonization, seedling growth, ion content, and solute accumulation were measured. The results showed that the colonization rate and the dry weights of the seedlings were both decreased with the increasing salt-alkali concentration, and were much lower under alkali stress. Both of the nitrogen treatments decreased the colonization rate and dry weights compared with those of the AM seedlings, especially under the N2 (more NH4 +-N content) treatment. The Na+ content increased but the K+ content decreased under salt-alkali stress, and more markedly under alkali stress. AMF colonization decreased the Na+ content and increased the K+ content to some extent. In addition, the nitrogen treatments had a negative effect on the two ions in the AM seedlings. Under salt stress, the seedlings accumulated abundant Cl- to maintain osmotic and ionic balance, but alkali stress inhibited the absorption of anions and the seedlings accumulated organic acids in order to resist the imbalance of both osmosis and ions, whether under the AM or nitrogen treatments. In addition, proline accumulation is thought to be a typical adaptive feature in both AM and non-AM plants under nitrogen and salt-alkali stress. Our results suggest that the salt-alkali tolerance of Leymus chinensis seedlings is enhanced by association with arbuscular mycorrhizal fungi, and the seedlings can adapt to the nitrogen and salt-alkali conditions by adjusting their osmotic adjustment and ion balance. Excessive nitrogen partly decreased the salt-alkali tolerance of the Leymus chinensis seedlings.

17.
R Soc Open Sci ; 5(8): 180676, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30225063

RESUMO

Aralia elata buds contain many nutrients and have a pleasant taste with a unique flavour. Previous studies mainly focused on triterpene saponins in the root bark of this species, but little information existed concerning other chemical components, especially in the buds. To better understand the nutritional value of A. elata, we compared total flavonoids, total saponins, phenolic compounds and mineral element contents in the buds of A. elata collected from eight different geographical regions (S1: Benxi; S2: Linjiang; S3: Pingwu; S4: Enshi; S5: Changbaishan; S6: Shangzhi; S7: Xiaoxinganling and S8: Harbin) in China. The results showed that the basic composition in the buds presented a wide variation, with ash (8.76-10.35%), crude fibre (5.38-11.07%), polysaccharides (33.85-46.79 mg g-1), total flavonoid content (TFC, 4.06-48.63 mg g-1) and total saponins (13.62-27.85 mg g-1). UPLC combined with the LC-MS/MS method was used for the phenolic compounds analysis, and 11 phenolic compounds were identified and quantified in the eight samples. The total phenolic content in Enshi (S4) was significantly higher than others, and quercetin was the predominant phenolic compound in this sample. We used ICP-OES to identify and quantify nine mineral elements in the buds. The Fe and Cu contents in S5 were much higher than that of others. We obtained maximum Mg, Mn, Co and Ni contents in S4, and found rich Zn content in S7. Moreover, the maximum estimated quantities of Ca and Sr were found in S8. This study indicated that the chemical composition in the buds of A. elata was obviously affected by geographical origin. Our results provided an essential theoretical basis of quality evaluation of A. elata buds in the food production field.

18.
Front Plant Sci ; 9: 1458, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356802

RESUMO

Ryegrass is considered a useful grass species for forage production and turf purposes. Annual ryegrass (Lolium multiflorum Lam.) and perennial ryegrass (Lolium perenne L.)are two species of ryegrass with similar genomes. So far, little information exists concerning their physiological response to salt-alkali stress during germination stage, especially under different temperature regimes. Seeds of ryegrass were germinated at four alternating temperatures (10-20, 15-25, 20-30, and 25-35°C) with salinity (NaCl) and alkalinity (Na2CO3, high pH) stresses. Results showed that optimal germination for both species under stress conditions occurred at higher temperatures (20-30°C for annual ryegrass; 20-30°C and 25-35°C for perennial ryegrass). Germination percentage and germination rate were both inhibited by increasing salinity or alkalinity, particularly higher alkalinities under any temperature. The inhibitory effects of the high salinity on germination were greater at 10-20°C for both species. However, seeds were subjected to more stress at 25-35°C under alkali stress even though the concentration was very low. In addition, both high and low temperatures lead to a markedly decrease in seed germination under alkali stress for perennial ryegrass. Recovery percentage of both species were highest at 400 mM salinity and 25 mM alkalinity under any temperature, especially 10-20°C, and 25-35°C also resulted in lower recovery percentages under both stresses for ryegrass. Moreover, annual ryegrass had a much higher recovery percentage than perennial ryegrass under such stress conditions. These results suggest that salinity stress and alkalinity stress are greatly different, and the salt-alkaline tolerance of ryegrass seeds is greatly affected by the interactions of temperature and salinity-alkalinity.

19.
Front Plant Sci ; 9: 1939, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687346

RESUMO

Ricinus communis is an important energy crop and is considered as one of the most potential plants for salt-alkali soil improvement in Northeast China. Early seedling stage (such as the cotyledon expansion stage) is always a vulnerable stage but plays a vital role in plant establishment, especially under stress conditions. However, little information exists concerning the function of cotyledon and the relationship between cotyledon and true leaf in the adaptation to salt stress and alkali stress of this species. Here, Ricinus communis seedlings were treated with varying (40, 80 and 120 mM) salinity (NaCl) and alkalinity (NaHCO3), growth, photosynthesis, and chlorophyll fluorescence of cotyledons and true leaves were measured. The results showed that the biomass, photosynthetic parameters, and the qp value of both cotyledons and true leaves decreased with increasing salt-alkali stress, and the decrease in biomass, g s and Tr, of true leaves were much greater than that of cotyledons. Salt-alkali stress only reduced photosynthetic pigments and ΦPSII in cotyledons, but did not affect those in true leaves. Additionally, the Fv/Fm and NPQ between cotyledons and true leaves showed different trends in salinity and alkalinity. The results suggested that alkali stress could cause much more damage to the castor bean seedlings, and different physiological responses and adaptive strategies are found in cotyledons and true leaves under salt-alkali stress. This study will help us develop a better understanding of the adaptation mechanisms of cotyledon and true leaf during early seedling stage of castor bean plant, and also provide new insights into the function of cotyledon in Ricinus communis under salt-alkali stress conditions.

20.
Opt Express ; 13(7): 2444-52, 2005 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-19495136

RESUMO

In this study we focus on understanding the system imaging mechanisms given rise to the unique characteristic of discretization in digital holography. Imaging analysis with respect to the system geometries is investigated and the corresponding requirements for reliable holographic imaging are specified. In addition, the imaging capacity of a digital holographic system is analyzed in terms of space-bandwidth product. The impacts due to the discrete features of the CCD sensor that are characterized by the amount of sensitive pixels and the pixel dimension are quantified. The analysis demonstrates the favorable properties of an in-line system arrangement in both the effective field of view and imaging resolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA