Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Dis ; 108(6): 1659-1669, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38128078

RESUMO

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases worldwide. In China, wheat stripe rust generally occurs in the northwestern and southwestern regions; however, the genetic relationships of Pst populations between these regions are largely unclear. To determine the population structure and potential migration route in these regions, 235 isolates collected from Xinjiang (XJ), Gansu (GS), Ningxia (NX), Shaanxi (SX), Sichuan (SC), and Yunnan (YN) provinces in 2021 and 2022 were phenotyped using two sets of Pst differentials and genotyped using 20 competitive allele-specific PCR-single nucleotide polymorphism (KASP-SNP) markers. The phenotype tests indicated that CYR34, CYR32, and CYR33 were the predominant races with different occurrence frequencies in different regions and years. Genotypic analysis revealed that a total of 183 multilocus genotypes were identified, and the genetic diversity in the YN subpopulation was the highest. The genetic background in the SX subpopulation was similar to that in the GS and NX subpopulations, and the genetic background in the YN subpopulation was similar to that in the SC and SX subpopulations. A high level of gene flow (Nm) was found between the SX and GS, SX and NX, GS and NX, and SC and YN subpopulations, suggesting the migration of Pst among these regions, while a small amount of Nm existed between the SX and SC subpopulations. SC may serve as a bridge connecting Pst subpopulations between the northwestern provinces (SX, GS, and NX) and the southwestern provinces (SC and YN). With a relatively high genetic distance and low Nm values compared with other Pst subpopulations, XJ is considered a relatively independent epidemiological region in China. These results improved our current understanding of the wheat stripe rust epidemic in northwestern and southwestern regions of China.


Assuntos
Genótipo , Doenças das Plantas , Puccinia , Triticum , China , Triticum/microbiologia , Doenças das Plantas/microbiologia , Puccinia/genética , Polimorfismo de Nucleotídeo Único/genética , Fenótipo , Variação Genética , Filogenia
2.
Plant Dis ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38127636

RESUMO

The damage caused by white-back planthopper (WBPH, Sogatella furcifera) and brown planthopper (BPH, Nilaparvata lugens), as well as southern rice black-streaked dwarf virus (SRBSDV), considerably decreases grain yield of rice. Identification of rice germplasms with sufficient resistance to planthoppers and SRBSDV is essential to the breeding and deployment of resistant varieties and hence the control of the pests and disease. In this study, 318 rice accessions were evaluated for their reactions to the infestation of both BPH and WBPH at the seedling stage using the standard seed-box screening test (SSST) method, insect quantification was further conducted at the end of tillering and grain-filling stages in field trials. Accessions HN12-239 and HN12-328 were resistant to both BPH and WBPH at all tested stages. Field trials were conducted to identify resistance in the collection to SRBSDV based on the virus infection rate under artificial inoculation. RHT and HN12-239 were moderately resistant to SRBSDV. In addition, we found that WBPH did not penetrate stems with stylets, but did more probing bouts and then xylem sap ingestion when feeding on HN12-239 than the susceptible control rice TN1. The resistance of rice accessions HN12-239, HN12-328 and RHT to BPH, WBPH and/or SRBSDV, should be valuable to the development of resistant rice varieties.

3.
Int J Mol Sci ; 17(4)2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27110767

RESUMO

The objective of this research was to characterize the high level of resistance to stripe that has been observed in the released wheat cultivar, Chuanmai45. A combination of classic genetic analysis, molecular and cytogenetic methods were used to characterize resistance in an F2 population derived from Chuanmai45 and the susceptible Chuanmai42. Inheritance of resistance was shown to be conferred by two genes in Chuanmai45. Fluorescence in situ hybridization (FISH) was used along with segregation studies to show that one gene was located on a 1RS.1BL translocation. Molecular markers were employed to show that the other locus was located on chromosome 4B. The defeated gene, Yr24/26, on chromosome 1BL was present in the susceptible parent and lines that recombined this gene with the 1RS.1BL translocation were identified. The germplasm, loci, and associated markers identified in this study will be useful for application in breeding programs utilizing marker-assisted selection.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/microbiologia , Triticum/genética , Biomarcadores/metabolismo , Hibridização In Situ , Cariótipo , Translocação Genética
4.
BMC Evol Biol ; 13: 169, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23937410

RESUMO

BACKGROUND: Patterns of genetic diversity between and within natural plant populations and their driving forces are of great interest in evolutionary biology. However, few studies have been performed on the genetic structure and population divergence in wild emmer wheat using a large number of EST-related single nucleotide polymorphism (SNP) markers. RESULTS: In the present study, twenty-five natural wild emmer wheat populations representing a wide range of ecological conditions in Israel and Turkey were used. Genetic diversity and genetic structure were investigated using over 1,000 SNP markers. A moderate level of genetic diversity was detected due to the biallelic property of SNP markers. Clustering based on Bayesian model showed that grouping pattern is related to the geographical distribution of the wild emmer wheat. However, genetic differentiation between populations was not necessarily dependent on the geographical distances. A total of 33 outlier loci under positive selection were identified using a FST-outlier method. Significant correlations between loci and ecogeographical factors were observed. CONCLUSIONS: Natural selection appears to play a major role in generating adaptive structures in wild emmer wheat. SNP markers are appropriate for detecting selectively-channeled adaptive genetic diversity in natural populations of wild emmer wheat. This adaptive genetic diversity is significantly associated with ecological factors.


Assuntos
Ecossistema , Variação Genética , Polimorfismo de Nucleotídeo Único , Triticum/genética , Evolução Molecular , Geografia , Israel , Filogenia , Seleção Genética , Triticum/classificação , Turquia
5.
Int J Mol Sci ; 14(4): 7061-88, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23538839

RESUMO

Evaluation of genetic diversity and genetic structure in crops has important implications for plant breeding programs and the conservation of genetic resources. Newly developed single nucleotide polymorphism (SNP) markers are effective in detecting genetic diversity. In the present study, a worldwide durum wheat collection consisting of 150 accessions was used. Genetic diversity and genetic structure were investigated using 946 polymorphic SNP markers covering the whole genome of tetraploid wheat. Genetic structure was greatly impacted by multiple factors, such as environmental conditions, breeding methods reflected by release periods of varieties, and gene flows via human activities. A loss of genetic diversity was observed from landraces and old cultivars to the modern cultivars released during periods of the Early Green Revolution, but an increase in cultivars released during the Post Green Revolution. Furthermore, a comparative analysis of genetic diversity among the 10 mega ecogeographical regions indicated that South America, North America, and Europe possessed the richest genetic variability, while the Middle East showed moderate levels of genetic diversity.


Assuntos
Internacionalidade , Polimorfismo de Nucleotídeo Único/genética , Sementes/genética , Triticum/genética , Cromossomos de Plantas/genética , Etiquetas de Sequências Expressas , Marcadores Genéticos , Genoma de Planta/genética , Humanos , Filogenia , Triticum/anatomia & histologia
6.
J Fungi (Basel) ; 9(3)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36983531

RESUMO

Barley (Hordeum vulgare L.) is the most important cereal crop in the Qinghai-Tibet Plateau, and the yield has been seriously threatened by Blumeria graminis f. sp. hordei (Bgh) in recent years. To understand the virulence and genetic traits of different Bgh populations, 229 isolates of Bgh were collected from Tibet, Sichuan, Gansu and Yunnan provinces of China during 2020 and 2021, and their pathogenicity to 21 barley lines of different genotypes was assessed. A total of 132 virulent types were identified. The Bgh isolates from Yunnan showed the highest diversity in terms of virulence complexity (Rci) and genetic diversity (KWm), followed by those from Sichuan, Gansu, and Tibet, in that order. Single nucleotide polymorphism (SNP) in genes coding for alternative oxidase (AOX), protein kinase A (PKA), and protein phosphatase type 2A (PPA) were detected at seven polymorphic sites. Nine haplotypes (H1-H9) with an average haplotype diversity (Hd) and nucleotide diversity π of 0.564 and 0.00034, respectively, were observed. Of these, haplotypes H1 and H4 accounted for 88.8% of the isolates, and H4 was predominant in Tibet. Genetic diversity analysis using the STRUCTURE (K = 2) and AMOVE indicated that the inter-group variation accounted for 54.68%, and inter- and intra-population genotypic heterogeneity accounted for 23.90% and 21.42%, respectively. The results revealed the recent expansion of the Bgh population in Tibet, accompanied by an increase in virulence and a loss of genetic diversity.

7.
Front Plant Sci ; 13: 788876, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498644

RESUMO

Magnaporthe oryzae is the causative agent of rice blast, a devastating disease in rice worldwide. Based on the gene-for-gene paradigm, resistance (R) proteins can recognize their cognate avirulence (AVR) effectors to activate effector-triggered immunity. AVR genes have been demonstrated to evolve rapidly, leading to breakdown of the cognate resistance genes. Therefore, understanding the variation of AVR genes is essential to the deployment of resistant cultivars harboring the cognate R genes. In this study, we analyzed the nucleotide sequence polymorphisms of eight known AVR genes, namely, AVR-Pita1, AVR-Pii, AVR-Pia, AVR-Pik, AVR-Pizt, AVR-Pi9, AVR-Pib, and AVR-Pi54 in a total of 383 isolates from 13 prefectures in the Sichuan Basin. We detected the presence of AVR-Pik, AVR-Pi54, AVR-Pizt, AVR-Pi9, and AVR-Pib in the isolates of all the prefectures, but not AVR-Pita1, AVR-Pii, and AVR-Pia in at least seven prefectures, indicating loss of the three AVRs. We also detected insertions of Pot3, Mg-SINE, and indels in AVR-Pib, solo-LTR of Inago2 in AVR-Pizt, and gene duplications in AVR-Pik. Consistently, the isolates that did not harboring AVR-Pia were virulent to IRBLa-A, the monogenic line containing Pia, and the isolates with variants of AVR-Pib and AVR-Pizt were virulent to IRBLb-B and IRBLzt-t, the monogenic lines harboring Pib and Piz-t, respectively, indicating breakdown of resistance by the loss and variations of the avirulence genes. Therefore, the use of blast resistance genes should be alarmed by the loss and nature variations of avirulence genes in the blast fungal population in the Sichuan Basin.

8.
Front Plant Sci ; 12: 755802, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126405

RESUMO

Plant hormones have a prominent place in the plant immune and defense mechanism. To gain more information about the plant hormone pathways involved in rice defense against nematodes, here, we studied the roles of three core hormones, namely, salicylic acid (SA), jasmonate (JA), and ethylene (ET) in rice defense to Aphelenchoides besseyi by using the susceptible variety, Nipponbare as well as the resistant variety Tetep. The data showed that Tetep exhibited pre- and post-invasion with suppression of nematode infection, development, and reproduction. The quantitative real-time (qRT)-PCR analysis of plant hormone marker genes in the two cultivars clearly revealed that all the SA-related genes were downregulated in susceptible Nipponbare plants but were significantly upregulated in resistant Tetep plants at the flowering stage. The exogenous application of the SA analog, benzo-1,2,3-thiadiazole-7-carbothioic acid S-methyl ester (BTH), methyl jasmonate (MeJA), and ethephon did induce rice resistance to A. besseyi, and the rice plants treated by hormone inhibitors increased susceptibility to A. besseyi. Similarly, corresponding transgenic biosynthesis or signaling mutants of those hormones also showed an increased susceptibility. Collectively, these results suggest that SA, JA, and ET play important defense roles in rice against A. besseyi.

9.
Sci Total Environ ; 689: 743-753, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31280156

RESUMO

In order to provide an overall evaluation and characterization of the comfort sensation and performance of face mask related to breathing resistance for healthcare in fog and haze weather, and address the influence of structural features on breathing resistance properties, an experimental set-up was developed, which was able to continuously change the direction and rate of air flow and the breathing frequency to simulate the dynamic breathing process during the actual wearing of face mask. The dynamic changes of airflow rate and the breathing resistance were acquired by a virtual instrument (VI) system and a microelectronics system. Six evaluation indices were defined for the dynamic performance and comfort sensation of face mask, derived from the source data of dynamic breathing resistance. Twelve types of face masks from different department stores with different features such as shape, respiratory valve, brand, main materials and protection level were tested using the experimental set-up. The one-way ANOVA analysis was carried out to identify the significance of the differences of the indices among the test masks. The results showed that each evaluation index was significantly different (P < 0.05) among different test masks. The change rate of breathing resistance could be obtained using the dynamic measurement of breathing resistance and could be applied for the dynamic performance evaluation of face mask compared with the static measurement of breathing resistance under constant airflow rate. The influences of structural features such as respiratory valve, shape and main materials on breathing resistance were evaluated and analyzed. The face masks with respiratory valve had lower change rate of breathing resistance. Moreover, the cup type mask had lower change rate of breathing resistance than the folding mask. Furthermore, the cotton mask had lower change rate of breathing resistance than the nonwoven fabric mask.


Assuntos
Movimentos do Ar , Máscaras , Respiração , Humanos
10.
Polymers (Basel) ; 10(4)2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30966408

RESUMO

Tactile properties are one of the most important attributes of porous polymeric materials such as textiles, comprising a subjective evaluation index for textile materials and functional clothing, primarily affecting the sensation of comfort during the wearing of a garment. A new test method was proposed, and a mechanical measurement system was developed to objectively characterize the tactile properties of porous polymeric materials by simulating the dynamic contact processes during human skin contact with the materials and in consideration of different aspects of tactile sensations. The measurement system can measure the bending, compression, friction, and thermal transfer properties in one apparatus, and is capable of associating the objective measurements with the subjective tactile sensations. The test and evaluation method, the components of the mechanical measurement system, the definition and grading method of the evaluation indices, and the neural network prediction model from objective test results to subjective sensations of tactile properties were presented. The experiments were conducted for the objective tests and correlation tests. Seven types of porous polymeric sheet materials from seven categories for the tactile properties were cut to a size of 200 mm × 200 mm and tested. Each index of tactile properties was significantly different (P < 0.05) between different sheet materials. The correlations of bending, compression, friction, and thermal transfer properties with Kawabata KES test methods were analyzed. An intra-laboratory test was conducted and an analysis of the variance was performed to determine the critical differences of within laboratory precisions of the measurement system. This mechanical measurement system provides a method and system for objective measurement and evaluation of tactile properties of porous polymeric sheet materials in industrial application.

11.
Materials (Basel) ; 10(11)2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29084152

RESUMO

Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations and aesthetic qualities of clothing. A multi-sensory measurement system and a new method were proposed to simultaneously sense the contact and characterize the mechanical and dynamic heat transfer properties of porous polymeric materials, such as textile fabrics in one instrument, with consideration of the interactions between different aspects of contact feels. The multi-sensory measurement system was developed for simulating the dynamic contact and psychological judgment processes during human hand contact with porous polymeric materials, and measuring the surface smoothness, compression resilience, bending and twisting, and dynamic heat transfer signals simultaneously. The contact sensing principle and the evaluation methods were presented. Twelve typical sample materials with different structural parameters were measured. The results of the experiments and the interpretation of the test results were described. An analysis of the variance and a capacity study were investigated to determine the significance of differences among the test materials and to assess the gage repeatability and reproducibility. A correlation analysis was conducted by comparing the test results of this measurement system with the results of Kawabata Evaluation System (KES) in separate instruments. This multi-sensory measurement system provides a new method for simultaneous contact sensing and characterizing of mechanical and dynamic heat transfer properties of porous polymeric materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA