RESUMO
OBJECTIVE: Auditory mismatch negativity (MMN) impairment is a candidate endophenotype in psychotic disorders, yet the genetic underpinnings remain to be clarified. Here, we examined the relationships between auditory MMN and polygenic risk scores (PRS) for individuals with psychotic disorders, including schizophrenia spectrum disorders (SSD) and bipolar disorder (BD) and in healthy controls (HC). METHODS: Genotyped and clinically well-characterized individuals with psychotic disorders (n = 102), including SSD (n = 43) and BD (n = 59), and HC (n = 397) underwent a roving MMN paradigm. In addition MMN, we measured the memory traces of the repetition positivity (RP) and the deviant negativity (DN), which is believed to reflect prediction encoding and prediction error signals, respectively. SCZ and BD PRS were computed using summary statistics from the latest genome-wide association studies. The relationships between the MMN, RP, and DN and the PRSs were assessed with linear regressions. RESULTS: We found no significant association between the SCZ or BD PRS and grand average MMN in the psychotic disorders group or in the HCs group (all p > 0.05). SCZ PRS and BD PRS were negatively associated with RP in the psychotic disorders group (ß = -0.46, t = -2.86, p = 0.005 and ß = -0.29, t = -0.21, p = 0.034, respectively). No significant associations were found between DN and PRS. CONCLUSION: These findings suggest that genetic variants associated with SCZ and BD may be associated with MMN subcomponents linked to predictive coding among patients with psychotic disorders. Larger studies are needed to confirm these findings and further elucidate the genetic underpinnings of MMN impairment in psychotic disorders.
Assuntos
Transtorno Bipolar , Transtornos Psicóticos , Esquizofrenia , Humanos , Transtorno Bipolar/genética , Esquizofrenia/genética , Estratificação de Risco Genético , Estudo de Associação Genômica Ampla , Transtornos Psicóticos/genéticaRESUMO
OBJECTIVE: Research increasingly implicates glutamatergic dysfunction in the pathophysiologies of psychotic disorders. Auditory mismatch negativity (MMN) is an electroencephalography (EEG) waveform linked to glutamatergic neurotransmission and is consistently attenuated in schizophrenia (SCZ). MMN consists of two subcomponents, the repetition positivity (RP) and deviant negativity (DN) possibly reflecting different neural mechanisms. However, whether MMN reduction is present across different psychotic disorders, linked to distinct symptom clusters, or related to sex remain to be clarified. METHODS: Four hundred participants including healthy controls (HCs; n = 296) and individuals with SCZ (n = 39), bipolar disorder (BD) BD typeI (n = 35), or BD type II (n = 30) underwent a roving MMN paradigm and clinical evaluation. MMN, RP and DN as well their memory traces were recorded at the FCZ electrode. Analyses of variance and linear regression models were used both transdiagnostically and within clinical groups. RESULTS: MMN was reduced in SCZ compared to BD (p = 0.006, d = 0.55) and to HCs (p < 0.001, d = 0.63). There was a significant group × sex interaction (p < 0.003) and the MMN impairment was only detected in males with SCZ. MMN amplitude correlated positively with Positive and Negative Syndrome Scale total score and negatively with Global Assessment of Functioning Scale score. The deviant negativity was impaired in males with SCZ. No group differences in memory trace indices of the MMN, DN, or RP. CONCLUSION: MMN was attenuated in SCZ and correlated with greater severity of psychotic symptoms and lower level of functioning. Our results may indicate sex-dependent differences of glutamatergic function in SCZ.
Assuntos
Transtorno Bipolar , Esquizofrenia , Humanos , Masculino , Feminino , Potenciais Evocados Auditivos/fisiologia , Caracteres Sexuais , EletroencefalografiaRESUMO
Background and Hypothesis: The auditory cortex (AC) may play a central role in the pathophysiology of schizophrenia and auditory hallucinations (AH). Previous schizophrenia studies report thinner AC and impaired AC function, as indicated by decreased N100 amplitude of the auditory evoked potential. However, whether these structural and functional alterations link to AH in schizophrenia remain poorly understood. Study Design: Patients with a schizophrenia spectrum disorder (SCZspect), including patients with a lifetime experience of AH (AH+), without (AH-), and healthy controls underwent magnetic resonance imaging (39 SCZspect, 22 AH+, 17 AH-, and 146 HC) and electroencephalography (33 SCZspect, 17 AH+, 16 AH-, and 144 HC). Cortical thickness of the primary (AC1, Heschl's gyrus) and secondary (AC2, Heschl's sulcus, and the planum temporale) AC was compared between SCZspect and controls and between AH+, AH-, and controls. To examine if the association between AC thickness and N100 amplitude differed between groups, we used regression models with interaction terms. Study Results: N100 amplitude was nominally smaller in SCZspect (P = .03, d = 0.42) and in AH- (P = .020, d = 0.61), while AC2 was nominally thinner in AH+ (P = .02, d = 0.53) compared with controls. AC1 thickness was positively associated with N100 amplitude in SCZspect (t = 2.56, P = .016) and AH- (t = 3.18, P = .008), while AC2 thickness was positively associated with N100 amplitude in SCZspect (t = 2.37, P = .024) and in AH+ (t = 2.68, P = .019). Conclusions: The novel findings of positive associations between AC thickness and N100 amplitude in SCZspect, suggest that a common neural substrate may underlie AC thickness and N100 amplitude alterations.