Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(20): 11820-11833, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36321657

RESUMO

Cas12c is the recently characterized dual RNA-guided DNase effector of type V-C CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated protein) systems. Due to minimal requirements for a protospacer adjacent motif (PAM), Cas12c is an attractive candidate for genome editing. Here we report the crystal structure of Cas12c1 in complex with single guide RNA (sgRNA) and target double-stranded DNA (dsDNA) containing the 5'-TG-3' PAM. Supported by biochemical and mutation assays, this study reveals distinct structural features of Cas12c1 and the associated sgRNA, as well as the molecular basis for PAM recognition, target dsDNA unwinding, heteroduplex formation and recognition, and cleavage of non-target and target DNA strands. Cas12c1 recognizes the PAM through a mechanism that is interdependent on sequence identity and Cas12c1-induced conformational distortion of the PAM region. Another special feature of Cas12c1 is the cleavage of both non-target and target DNA strands at a single, uniform site with indistinguishable cleavage capacity and order. Location of the sgRNA seed region and minimal length of target DNA required for triggering Cas12c1 DNase activity were also determined. Our findings provide valuable information for developing the CRISPR-Cas12c1 system into an efficient, high-fidelity genome editing tool.


Assuntos
Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Proteínas Associadas a CRISPR/metabolismo , Desoxirribonucleases/metabolismo , DNA/química , Clivagem do DNA , Edição de Genes , Pequeno RNA não Traduzido/metabolismo
2.
PLoS Biol ; 18(3): e3000654, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32134919

RESUMO

Proteasomes are highly abundant and conserved protease complexes that eliminate unwanted proteins in the cells. As a single-chain ATP-independent nuclear proteasome activator, proteasome activator 200 (PA200) associates with 20S core particle to form proteasome complex that catalyzes polyubiquitin-independent degradation of acetylated histones, thus playing a pivotal role in DNA repair and spermatogenesis. Here, we present cryo-electron microscopy (cryo-EM) structures of the human PA200-20S complex and PA200 at 2.72 Å and 3.75 Å, respectively. PA200 exhibits a dome-like architecture that caps 20S and uses its C-terminal YYA (Tyr-Tyr-Ala) to induce the α-ring rearrangements and partial opening of the 20S gate. Our structural data also indicate that PA200 has two openings formed by numerous positively charged residues that respectively bind (5,6)-bisdiphosphoinositol tetrakisphosphate (5,6[PP]2-InsP4) and inositol hexakisphosphate (InsP6) and are likely to be the gates that lead unfolded proteins through PA200 and into the 20S. Besides, our structural analysis of PA200 found that the bromodomain (BRD)-like (BRDL) domain of PA200 shows considerable sequence variation in comparison to other human BRDs, as it contains only 82 residues because of a short ZA loop, and cannot be classified into any of the eight typical human BRD families. Taken together, the results obtained from this study provide important insights into human PA200-induced 20S gate opening for substrate degradation and the opportunities to explore the mechanism for its recognition of H4 histone in acetylation-mediated proteasomal degradation.


Assuntos
Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Sequência de Aminoácidos , Microscopia Crioeletrônica , Humanos , Fosfatos de Inositol/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Proteólise , Relação Estrutura-Atividade
3.
PLoS Pathog ; 16(3): e1008394, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32176738

RESUMO

Using bacteriophage-derived endolysins as an alternative strategy for fighting drug-resistant bacteria has recently been garnering renewed interest. However, their application is still hindered by their narrow spectra of activity. In our previous work, we demonstrated that the endolysin LysIME-EF1 possesses efficient bactericidal activity against multiple strains of Enterococcus faecalis (E. faecalis). Herein, we observed an 8 kDa fragment and hypothesized that it contributes to LysIME-EF1 lytic activity. To examine our hypothesis, we determined the structure of LysIME-EF1 at 1.75 Å resolution. LysIME-EF1 exhibits a unique architecture in which one full-length LysIME-EF1 forms a tetramer with three additional C-terminal cell-wall binding domains (CBDs) that correspond to the abovementioned 8 kDa fragment. Furthermore, we identified an internal ribosomal binding site (RBS) and alternative start codon within LysIME-EF1 gene, which are demonstrated to be responsible for the translation of the truncated CBD. To elucidate the molecular mechanism for the lytic activity of LysIME-EF1, we combined mutagenesis, lytic activity assays and in vivo animal infection experiments. The results confirmed that the additional LysIME-EF1 CBDs are important for LysIME-EF1 architecture and its lytic activity. To our knowledge, this is the first determined structure of multimeric endolysin encoded by a single gene in E. faecalis phages. As such, it may provide valuable insights into designing potent endolysins against the opportunistic pathogen E. faecalis.


Assuntos
Bacteriófagos/química , Endopeptidases/química , Enterococcus faecalis/virologia , Genes Virais , Proteínas Virais/química , Bacteriófagos/genética , Cristalografia por Raios X , Endopeptidases/genética , Enterococcus faecalis/química , Domínios Proteicos , Proteínas Virais/genética
4.
J Virol ; 94(22)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32817223

RESUMO

Coronaviruses (CoV) have caused a number of major epidemics in humans and animals, including the current pandemic of coronavirus disease 2019 (COVID-19), which has brought a renewed focus on the evolution and interspecies transmission of coronaviruses. Swine acute diarrhea syndrome coronavirus (SADS-CoV), which was recently identified in piglets in southern China, is an alphacoronavirus that originates from the same genus of horseshoe bats as severe acute respiratory syndrome CoV (SARS-CoV) and that was reported to be capable of infecting cells from a broad range of species, suggesting a considerable potential for interspecies transmission. Given the importance of the coronavirus spike (S) glycoprotein in host range determination and viral entry, we report a cryo-electron microscopy (cryo-EM) structure of the SADS-CoV S trimer in the prefusion conformation at a 3.55-Å resolution. Our structure reveals that the SADS-CoV S trimer assumes an intrasubunit quaternary packing mode in which the S1 subunit N-terminal domain (S1-NTD) and the S1 subunit C-terminal domain (S1-CTD) of the same protomer pack together by facing each other in the lying-down state. SADS-CoV S has several distinctive structural features that may facilitate immune escape, such as a relatively compact architecture of the S trimer and epitope masking by glycan shielding. Comparison of SADS-CoV S with the spike proteins of the other coronavirus genera suggested that the structural features of SADS-CoV S are evolutionarily related to those of the spike proteins of the other genera rather than to the spike protein of a typical alphacoronavirus. These data provide new insights into the evolutionary relationship between spike glycoproteins of SADS-CoV and those of other coronaviruses and extend our understanding of their structural and functional diversity.IMPORTANCE In this article, we report the atomic-resolution prefusion structure of the spike protein from swine acute diarrhea syndrome coronavirus (SADS-CoV). SADS-CoV is a pathogenic alphacoronavirus that was responsible for a large-scale outbreak of fatal disease in pigs and that was reported to be capable of interspecies transmission. We describe the overall structure of the SADS-CoV spike protein and conducted a detailed analysis of its main structural elements. Our results and analyses are consistent with those of previous phylogenetic studies and suggest that the SADS-CoV spike protein is evolutionarily related to the spike proteins of betacoronaviruses, with a strong similarity in S1-NTDs and a marked divergence in S1-CTDs. Moreover, we discuss the possible immune evasion strategies used by the SADS-CoV spike protein. Our study provides insights into the structure and immune evasion strategies of the SADS-CoV spike protein and broadens the understanding of the evolutionary relationships between coronavirus spike proteins of different genera.


Assuntos
Alphacoronavirus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Alphacoronavirus/genética , Sequência de Aminoácidos , Microscopia Crioeletrônica , Evolução Molecular , Evasão da Resposta Imune , Modelos Moleculares , Alinhamento de Sequência , Glicoproteína da Espícula de Coronavírus/química , Homologia Estrutural de Proteína
5.
Adv Sci (Weinh) ; 8(13): 2004685, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34254038

RESUMO

CRISPR-Cas systems are a form of prokaryotic adaptive immunity that employs RNA-guided endonucleases (Cas effectors) to cleave foreign genetic elements. Due to their simplicity, targeting programmability, and efficiency, single-effector CRISPR-Cas systems have great potential for application in research, biotechnology, and therapeutics. While DNA-targeting Cas effectors such as Cas9 and Cas12a have become indispensable tools for genome editing in the past decade, the more recent discovery of RNA-targeting CRISPR-Cas systems has opened the door for implementation of CRISPR-Cas technology in RNA manipulation. With an increasing number of studies reporting their application in transcriptome engineering, viral interference, nucleic acid detection, and RNA imaging, type VI CRISPR-Cas systems and the associated Cas13 effectors particularly hold promise as RNA-targeting or RNA-binding tools. However, even though previous structural and biochemical characterization provided a firm basis for leveraging type VI CRISPR-Cas systems into such tools, the lack of comprehension of certain mechanisms underlying their functions hinders more sophisticated and conventional use. This review will summarize current knowledge on structural and mechanistic properties of type VI CRISPR-Cas systems, give an overview on the reported applications, and discuss functional features that need further investigation in order to improve performance of Cas13-based tools.


Assuntos
Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Sistemas CRISPR-Cas
6.
Nat Commun ; 12(1): 3476, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108490

RESUMO

Cas12i is a newly identified member of the functionally diverse type V CRISPR-Cas effectors. Although Cas12i has the potential to serve as genome-editing tool, its structural and functional characteristics need to be investigated in more detail before effective application. Here we report the crystal structures of the Cas12i1 R-loop complexes before and after target DNA cleavage to elucidate the mechanisms underlying target DNA duplex unwinding, R-loop formation and cis cleavage. The structure of the R-loop complex after target DNA cleavage also provides information regarding trans cleavage. Besides, we report a crystal structure of the Cas12i1 binary complex interacting with a pseudo target oligonucleotide, which mimics target interrogation. Upon target DNA duplex binding, the Cas12i1 PAM-interacting cleft undergoes a remarkable open-to-closed adjustment. Notably, a zipper motif in the Helical-I domain facilitates unzipping of the target DNA duplex. Formation of the 19-bp crRNA-target DNA strand heteroduplex in the R-loop complexes triggers a conformational rearrangement and unleashes the DNase activity. This study provides valuable insights for developing Cas12i1 into a reliable genome-editing tool.


Assuntos
Proteínas Associadas a CRISPR/química , Clivagem do DNA , Endonucleases/química , Estruturas R-Loop , Pareamento de Bases , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Domínio Catalítico , DNA/química , DNA/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Ativação Enzimática , Magnésio/química , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/metabolismo , Temperatura
7.
Adv Sci (Weinh) ; 7(12): 2000871, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32596129

RESUMO

The Legionella pneumophila effector MavC is a transglutaminase that carries out atypical ubiquitination of the host ubiquitin (Ub)-conjugation enzyme UBE2N by catalyzing the formation of an isopeptide bond between Gln40Ub and Lys92UBE2N, which leads to inhibition of signaling in the NF-κB pathway. In the absence of UBE2N, MavC deamidates Ub at Gln40 or catalyzes self-ubiquitination. However, the mechanisms underlying these enzymatic activities of MavC are poorly understood at the molecular level. This study reports the structure of the MavC-UBE2N-Ub ternary complex representing a snapshot of MavC-catalyzed crosslinking of UBE2N and Ub, which reveals the way by which UBE2N-Ub binds to the Insertion and Tail domains of MavC. Based on the structural and experimental data, the catalytic mechanism for the deamidase and transglutaminase activities of MavC is proposed. Finally, by comparing the structures of MavC and MvcA, the homologous protein that reverses MavC-induced UBE2N ubiquitination, several essential regions and two key residues (Trp255MavC and Phe268MvcA) responsible for their respective enzymatic activities are identified. The results provide insights into the mechanisms for substrate recognition and ubiquitination mediated by MavC as well as explanations for the opposite activity of MavC and MvcA in terms of regulation of UBE2N ubiquitination.

8.
Sci Rep ; 9(1): 9377, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253826

RESUMO

Mangrove swamp is one of the world's richest and most productive marine ecosystems. This ecosystem also has a great ecological importance, but is highly susceptible to anthropogenic disturbances. The balance of mangrove ecosystem depends largely on the microbial communities in mangrove sediments. Thus, understanding how the mangrove microbial communities respond to spatial differences is essential for more accurate assessment of mangrove ecosystem health. To this end, we performed the first medium-distance (150 km) research on the biogeographic distribution of mangrove microbial communities. The hypervariable regions of 16S rRNA gene was sequenced by Illumina to compare the microbial communities in mangrove sediments collected from six locations (i.e. Zhenzhu harbor, Yuzhouping, Maowei Sea, Qinzhou harbor, Beihai city and Shankou) along the coastline of Beibu Gulf in Guangxi province, China. Collectively, Proteobacteria, Bacteroidetes, Chloroflexi, Actinobacteria, Parvarchaeota, Acidobacteria and Cyanobacteria were the predominant phyla in the mangrove sediments of this area. At genus level, the heat map of microbial communities reflected similarities between study sites and was in agreement with their biogeographic characteristics. Interestingly, the genera Desulfococcus, Arcobacter, Nitrosopumilus and Sulfurimonas showed differences in abundance between study sites. Furthermore, the principal component analysis (PCA) and unweighted UniFrac cluster tree of beta diversity were used to study the biogeographic diversity of the microbial communities. Relatively broader variation of microbial communities was found in Beihai city and Qinzhou harbour, suggesting that environmental condition and historical events may play an important role in shaping the bacterial communities as well. This is the first report on medium-distance range distribution of bacteria in the mangrove swamp ecosystem. Our data is valuable for monitoring and evaluation of the impact of human activity on mangrove habitats from the perspective of microbiome.


Assuntos
Biodiversidade , Microbiologia Ambiental , Metagenoma , Metagenômica , Microbiota , Áreas Alagadas , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , China , Biologia Computacional/métodos , Ecossistema , Geografia , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica/métodos , Filogenia , RNA Ribossômico 16S/genética
9.
Nat Commun ; 10(1): 2544, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186424

RESUMO

Cas13d, the type VI-D CRISPR-Cas effector, is an RNA-guided ribonuclease that has been repurposed to edit RNA in a programmable manner. Here we report the detailed structural and functional analysis of the uncultured Ruminococcus sp. Cas13d (UrCas13d)-crRNA complex. Two hydrated Mg2+ ions aid in stabilizing the conformation of the crRNA repeat region. Sequestration of divalent metal ions does not alter pre-crRNA processing, but abolishes target cleavage by UrCas13d. Notably, the pre-crRNA processing is executed by the HEPN-2 domain. Furthermore, both the structure and sequence of the nucleotides U(-8)-C(-1) within the repeat region are indispensable for target cleavage, and are specifically recognized by UrCas13d. Moreover, correct base pairings within two separate spacer regions (an internal and a 3'-end region) are essential for target cleavage. These findings provide a framework for the development of Cas13d into a tool for a wide range of applications.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Ribonucleases/metabolismo , Ruminococcus/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Conformação de Ácido Nucleico , Domínios Proteicos , Processamento Pós-Transcricional do RNA , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Guia de Cinetoplastídeos/genética , Ribonucleases/química , Ribonucleases/genética , Ruminococcus/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA