Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 28(6): 767-779, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29735605

RESUMO

Genetic and archaeological data indicate that the initial Paleoindian settlers of South America followed two entry routes separated by the Andes and the Amazon rainforest. The interactions between these paths and their impact on the peopling of South America remain unclear. Analysis of genetic variation in the Peruvian Andes and regions located south of the Amazon River might provide clues on this issue. We analyzed mitochondrial DNA variation at different Andean locations and >360,000 autosomal SNPs from 28 Native American ethnic groups to evaluate different trans-Andean demographic scenarios. Our data reveal that the Peruvian Altiplano was an important enclave for early Paleoindian expansions and point to a genetic continuity in the Andes until recent times, which was only marginally affected by gene flow from the Amazonian lowlands. Genomic variation shows a good fit with the archaeological evidence, indicating that the genetic interactions between the descendants of the settlers that followed the Pacific and Atlantic routes were extremely limited.


Assuntos
DNA Mitocondrial/genética , Fluxo Gênico/genética , Genética Populacional , Arqueologia , Cromossomos Humanos Y/genética , Etnicidade/genética , Variação Genética , Haplótipos , Humanos , Mitocôndrias/genética , Polimorfismo de Nucleotídeo Único/genética , América do Sul
2.
Proc Natl Acad Sci U S A ; 114(16): 4093-4098, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28377518

RESUMO

Recent genomic studies of both ancient and modern indigenous people of the Americas have shed light on the demographic processes involved during the first peopling. The Pacific Northwest Coast proves an intriguing focus for these studies because of its association with coastal migration models and genetic ancestral patterns that are difficult to reconcile with modern DNA alone. Here, we report the low-coverage genome sequence of an ancient individual known as "Shuká Káa" ("Man Ahead of Us") recovered from the On Your Knees Cave (OYKC) in southeastern Alaska (archaeological site 49-PET-408). The human remains date to ∼10,300 calendar (cal) y B.P. We also analyze low-coverage genomes of three more recent individuals from the nearby coast of British Columbia dating from ∼6,075 to 1,750 cal y B.P. From the resulting time series of genetic data, we show that the Pacific Northwest Coast exhibits genetic continuity for at least the past 10,300 cal y B.P. We also infer that population structure existed in the late Pleistocene of North America with Shuká Káa on a different ancestral line compared with other North American individuals from the late Pleistocene or early Holocene (i.e., Anzick-1 and Kennewick Man). Despite regional shifts in mtDNA haplogroups, we conclude from individuals sampled through time that people of the northern Northwest Coast belong to an early genetic lineage that may stem from a late Pleistocene coastal migration into the Americas.


Assuntos
DNA Mitocondrial/genética , Evolução Molecular , Variação Genética , Genética Populacional , Genoma Mitocondrial , Genômica/métodos , Indígenas Norte-Americanos/genética , Arqueologia , Emigração e Imigração , Feminino , Humanos , Masculino , Filogenia
3.
BMC Biol ; 17(1): 3, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30674303

RESUMO

BACKGROUND: Recent genome studies of modern and ancient samples have proposed that Native Americans derive from a subset of the Eurasian gene pool carried to America by an ancestral Beringian population, from which two well-differentiated components originated and subsequently mixed in different proportion during their spread in the Americas. To assess the timing, places of origin and extent of admixture between these components, we performed an analysis of the Y-chromosome haplogroup Q, which is the only Pan-American haplogroup and accounts for virtually all Native American Y chromosomes in Mesoamerica and South America. RESULTS: Our analyses of 1.5 Mb of 152 Y chromosomes, 34 re-sequenced in this work, support a "coastal and inland routes scenario" for the first entrance of modern humans in North America. We show a major phase of male population growth in the Americas after 15 thousand years ago (kya), followed by a period of constant population size from 8 to 3 kya, after which a secondary sign of growth was registered. The estimated dates of the first expansion in Mesoamerica and the Isthmo-Colombian Area, mainly revealed by haplogroup Q-Z780, suggest an entrance in South America prior to 15 kya. During the global constant population size phase, local South American hints of growth were registered by different Q-M848 sub-clades. These expansion events, which started during the Holocene with the improvement of climatic conditions, can be ascribed to multiple cultural changes rather than a steady population growth and a single cohesive culture diffusion as it occurred in Europe. CONCLUSIONS: We established and dated a detailed haplogroup Q phylogeny that provides new insights into the geographic distribution of its Eurasian and American branches in modern and ancient samples.


Assuntos
Cromossomos Humanos Y , Variação Genética , Haplótipos , Indígenas Norte-Americanos/genética , Polimorfismo de Nucleotídeo Único , População Branca/genética , América , Europa (Continente) , Genética Populacional , Humanos , Filogenia
4.
Proc Natl Acad Sci U S A ; 110(35): 14308-13, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23940335

RESUMO

In this study we evaluated migration models to the Americas by using the information contained in native mitochondrial genomes (mitogenomes) from North America. Molecular and phylogeographic analyses of B2a mitogenomes, which are absent in Eskimo-Aleut and northern Na-Dene speakers, revealed that this haplogroup arose in North America ∼11-13 ka from one of the founder Paleo-Indian B2 mitogenomes. In contrast, haplogroup A2a, which is typical of Eskimo-Aleuts and Na-Dene, but also present in the easternmost Siberian groups, originated only 4-7 ka in Alaska, led to the first Paleo-Eskimo settlement of northern Canada and Greenland, and contributed to the formation of the Na-Dene gene pool. However, mitogenomes also show that Amerindians from northern North America, without any distinction between Na-Dene and non-Na-Dene, were heavily affected by an additional and distinctive Beringian genetic input. In conclusion, most mtDNA variation (along the double-continent) stems from the first wave from Beringia, which followed the Pacific coastal route. This was accompanied or followed by a second inland migratory event, marked by haplogroups X2a and C4c, which affected all Amerindian groups of Northern North America. Much later, the ancestral A2a carriers spread from Alaska, undertaking both a westward migration to Asia and an eastward expansion into the circumpolar regions of Canada. Thus, the first American founders left the greatest genetic mark but the original maternal makeup of North American Natives was subsequently reshaped by additional streams of gene flow and local population dynamics, making a three-wave view too simplistic.


Assuntos
Emigração e Imigração , Migração Humana , Indígenas Norte-Americanos/genética , Genoma Humano , Humanos
5.
Am J Hum Genet ; 90(5): 915-24, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22560092

RESUMO

Human populations, along with those of many other species, are thought to have contracted into a number of refuge areas at the height of the last Ice Age. European populations are believed to be, to a large extent, the descendants of the inhabitants of these refugia, and some extant mtDNA lineages can be traced to refugia in Franco-Cantabria (haplogroups H1, H3, V, and U5b1), the Italian Peninsula (U5b3), and the East European Plain (U4 and U5a). Parts of the Near East, such as the Levant, were also continuously inhabited throughout the Last Glacial Maximum, but unlike western and eastern Europe, no archaeological or genetic evidence for Late Glacial expansions into Europe from the Near East has hitherto been discovered. Here we report, on the basis of an enlarged whole-genome mitochondrial database, that a substantial, perhaps predominant, signal from mitochondrial haplogroups J and T, previously thought to have spread primarily from the Near East into Europe with the Neolithic population, may in fact reflect dispersals during the Late Glacial period, ∼19-12 thousand years (ka) ago.


Assuntos
DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/genética , População Branca/genética , Europa (Continente) , Europa Oriental/epidemiologia , Variação Genética , Genética Populacional , Humanos , Oriente Médio , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
6.
Genome Res ; 22(5): 821-6, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22454235

RESUMO

Mitochondrial DNA (mtDNA) lineages of macro-haplogroup L (excluding the derived L3 branches M and N) represent the majority of the typical sub-Saharan mtDNA variability. In Europe, these mtDNAs account for <1% of the total but, when analyzed at the level of control region, they show no signals of having evolved within the European continent, an observation that is compatible with a recent arrival from the African continent. To further evaluate this issue, we analyzed 69 mitochondrial genomes belonging to various L sublineages from a wide range of European populations. Phylogeographic analyses showed that ~65% of the European L lineages most likely arrived in rather recent historical times, including the Romanization period, the Arab conquest of the Iberian Peninsula and Sicily, and during the period of the Atlantic slave trade. However, the remaining 35% of L mtDNAs form European-specific subclades, revealing that there was gene flow from sub-Saharan Africa toward Europe as early as 11,000 yr ago.


Assuntos
DNA Mitocondrial/genética , África/etnologia , Emigração e Imigração/história , Europa (Continente) , Evolução Molecular , Haplótipos , História Antiga , Humanos , Dados de Sequência Molecular , Filogenia , Filogeografia , Análise de Componente Principal
7.
Genome Res ; 22(5): 811-20, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22333566

RESUMO

It is now widely agreed that the Native American founders originated from a Beringian source population ~15-18 thousand years ago (kya) and rapidly populated all of the New World, probably mainly following the Pacific coastal route. However, details about the migration into the Americas and the routes pursued on the continent still remain unresolved, despite numerous genetic, archaeological, and linguistic investigations. To examine the pioneering peopling phase of the South American continent, we screened literature and mtDNA databases and identified two novel mitochondrial DNA (mtDNA) clades, here named D1g and D1j, within the pan-American haplogroup D1. They both show overall rare occurrences but local high frequencies, and are essentially restricted to populations from the Southern Cone of South America (Chile and Argentina). We selected and completely sequenced 43 D1g and D1j mtDNA genomes applying highest quality standards. Molecular and phylogeographic analyses revealed extensive variation within each of the two clades and possibly distinct dispersal patterns. Their age estimates agree with the dating of the earliest archaeological sites in South America and indicate that the Paleo-Indian spread along the entire longitude of the American double continent might have taken even <2000 yr. This study confirms that major sampling and sequencing efforts are mandatory for uncovering all of the most basal variation in the Native American mtDNA haplogroups and for clarification of Paleo-Indian migrations, by targeting, if possible, both the general mixed population of national states and autochthonous Native American groups, especially in South America.


Assuntos
Emigração e Imigração/história , Genoma Mitocondrial , Indígenas Sul-Americanos/genética , Frequência do Gene , Haplótipos , História Antiga , Humanos , Indígenas Sul-Americanos/história , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , América do Sul
8.
Proc Natl Acad Sci U S A ; 109(7): 2449-54, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22308342

RESUMO

Archaeological and genetic evidence concerning the time and mode of wild horse (Equus ferus) domestication is still debated. High levels of genetic diversity in horse mtDNA have been detected when analyzing the control region; recurrent mutations, however, tend to blur the structure of the phylogenetic tree. Here, we brought the horse mtDNA phylogeny to the highest level of molecular resolution by analyzing 83 mitochondrial genomes from modern horses across Asia, Europe, the Middle East, and the Americas. Our data reveal 18 major haplogroups (A-R) with radiation times that are mostly confined to the Neolithic and later periods and place the root of the phylogeny corresponding to the Ancestral Mare Mitogenome at ~130-160 thousand years ago. All haplogroups were detected in modern horses from Asia, but F was only found in E. przewalskii--the only remaining wild horse. Therefore, a wide range of matrilineal lineages from the extinct E. ferus underwent domestication in the Eurasian steppes during the Eneolithic period and were transmitted to modern E. caballus breeds. Importantly, now that the major horse haplogroups have been defined, each with diagnostic mutational motifs (in both the coding and control regions), these haplotypes could be easily used to (i) classify well-preserved ancient remains, (ii) (re)assess the haplogroup variation of modern breeds, including Thoroughbreds, and (iii) evaluate the possible role of mtDNA backgrounds in racehorse performance.


Assuntos
Animais Domésticos/genética , DNA Mitocondrial/genética , Genoma , Haplótipos , Cavalos/genética , Animais , Cavalos/classificação , Filogenia
9.
Genome Res ; 20(9): 1174-9, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20587512

RESUMO

Pan-American mitochondrial DNA (mtDNA) haplogroup C1 has been recently subdivided into three branches, two of which (C1b and C1c) are characterized by ages and geographical distributions that are indicative of an early arrival from Beringia with Paleo-Indians. In contrast, the estimated ages of C1d--the third subset of C1--looked too young to fit the above scenario. To define the origin of this enigmatic C1 branch, we completely sequenced 63 C1d mitochondrial genomes from a wide range of geographically diverse, mixed, and indigenous American populations. The revised phylogeny not only brings the age of C1d within the range of that of its two sister clades, but reveals that there were two C1d founder genomes for Paleo-Indians. Thus, the recognized maternal founding lineages of Native Americans are at least 15, indicating that the overall number of Beringian or Asian founder mitochondrial genomes will probably increase extensively when all Native American haplogroups reach the same level of phylogenetic and genomic resolution as obtained here for C1d.


Assuntos
Genoma Mitocondrial/genética , Indígenas Norte-Americanos/genética , América , DNA Mitocondrial/genética , Emigração e Imigração , Variação Genética , Genoma Humano , Geografia , Haplótipos , Humanos , Dados de Sequência Molecular , Filogenia
10.
Int J Legal Med ; 127(1): 77-83, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22395921

RESUMO

It has been recorded that one of the possible causes that eventually escalated into the 1857 manslaughter at Mountain Meadows in Southern Utah was the poisoning of an open spring by the Fancher-Baker party as they crossed the Utah territory on their way from Arkansas to California. Historical accounts report that a number of cattle died, followed by human casualties from those that came in contact with the dead animals. Even after the Arkansas party departed, animals continued to perish and people were still afflicted by some unknown plague. Proctor Hancock Robison, a local 14-year-old boy, died shortly after skinning one of the "poisoned" cows. A careful review of the historical records, along with the more recent scientific literature, seems to exclude the likelihood of actual poisoning in favor of a more recent theory that would point to the bacterium Bacillus anthracis as the possible cause of human and animal deaths. In order to test this hypothesis, Proctor's remains were exhumed, identified through mitochondrial DNA analysis, and tested for the presence of anthrax spores. Although preliminary testing of remains and soil was negative, description of the clinical conditions that affected Proctor and other individuals does not completely rule out the hypothesis of death by anthrax.


Assuntos
Antraz/história , Bacillus anthracis/genética , DNA Mitocondrial/genética , Animais , Antraz/genética , Osso e Ossos/química , Bovinos/microbiologia , DNA Bacteriano/genética , Exumação , Feminino , História do Século XIX , Humanos , Masculino , RNA Ribossômico 16S , Reação em Cadeia da Polimerase em Tempo Real , Microbiologia do Solo , Esporos Bacterianos , Utah
11.
Am J Hum Genet ; 84(6): 814-21, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19500771

RESUMO

There are extensive data indicating that some glacial refuge zones of southern Europe (Franco-Cantabria, Balkans, and Ukraine) were major genetic sources for the human recolonization of the continent at the beginning of the Holocene. Intriguingly, there is no genetic evidence that the refuge area located in the Italian Peninsula contributed to this process. Here we show, through phylogeographic analyses of mitochondrial DNA (mtDNA) variation performed at the highest level of molecular resolution (52 entire mitochondrial genomes), that the most likely homeland for U5b3-a haplogroup present at a very low frequency across Europe-was the Italian Peninsula. In contrast to mtDNA haplogroups that expanded from other refugia, the Holocene expansion of haplogroup U5b3 toward the North was restricted by the Alps and occurred only along the Mediterranean coasts, mainly toward nearby Provence (southern France). From there, approximately 7,000-9,000 years ago, a subclade of this haplogroup moved to Sardinia, possibly as a result of the obsidian trade that linked the two regions, leaving a distinctive signature in the modern people of the island. This scenario strikingly matches the age, distribution, and postulated geographic source of a Sardinian Y chromosome haplogroup (I2a2-M26), a paradigmatic case in the European context of a founder event marking both female and male lineages.


Assuntos
Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Genética Populacional , Haplótipos/genética , Paleopatologia , Evolução Molecular , Feminino , Humanos , Itália , Masculino , Dados de Sequência Molecular , Linhagem
12.
BMC Genet ; 13: 39, 2012 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-22606979

RESUMO

BACKGROUND: Populations of the Americas were founded by early migrants from Asia, and some have experienced recent genetic admixture. To better characterize the native and non-native ancestry components in populations from the Americas, we analyzed 815,377 autosomal SNPs, mitochondrial hypervariable segments I and II, and 36 Y-chromosome STRs from 24 Mesoamerican Totonacs and 23 South American Bolivians. RESULTS AND CONCLUSIONS: We analyzed common genomic regions from native Bolivian and Totonac populations to identify 324 highly predictive Native American ancestry informative markers (AIMs). As few as 40-50 of these AIMs perform nearly as well as large panels of random genome-wide SNPs for predicting and estimating Native American ancestry and admixture levels. These AIMs have greater New World vs. Old World specificity than previous AIMs sets. We identify highly-divergent New World SNPs that coincide with high-frequency haplotypes found at similar frequencies in all populations examined, including the HGDP Pima, Maya, Colombian, Karitiana, and Surui American populations. Some of these regions are potential candidates for positive selection. European admixture in the Bolivian sample is approximately 12%, though individual estimates range from 0-48%. We estimate that the admixture occurred ~360-384 years ago. Little evidence of European or African admixture was found in Totonac individuals. Bolivians with pre-Columbian mtDNA and Y-chromosome haplogroups had 5-30% autosomal European ancestry, demonstrating the limitations of Y-chromosome and mtDNA haplogroups and the need for autosomal ancestry informative markers for assessing ancestry in admixed populations.


Assuntos
Indígena Americano ou Nativo do Alasca/genética , Bolívia/etnologia , DNA Mitocondrial , Emigração e Imigração , Genética Populacional , Humanos , México/etnologia , Filogeografia , Polimorfismo de Nucleotídeo Único , Seleção Genética
13.
Am J Phys Anthropol ; 147(1): 35-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22024980

RESUMO

Recent analyses of mitochondrial genomes from Native Americans have brought the overall number of recognized maternal founding lineages from just four to a current count of 15. However, because of their relative low frequency, almost nothing is known for some of these lineages. This leaves a considerable void in understanding the events that led to the colonization of the Americas following the Last Glacial Maximum (LGM). In this study, we identified and completely sequenced 14 mitochondrial DNAs belonging to one extremely rare Native American lineage known as haplogroup C4c. Its age and geographical distribution raise the possibility that C4c marked the Paleo-Indian group(s) that entered North America from Beringia through the ice-free corridor between the Laurentide and Cordilleran ice sheets. The similarities in ages andgeographical distributions for C4c and the previously analyzed X2a lineage provide support to the scenario of a dual origin for Paleo-Indians. Taking into account that C4c is deeply rooted in the Asian portion of the mtDNA phylogeny and is indubitably of Asian origin, the finding that C4c and X2a are characterized by parallel genetic histories definitively dismisses the controversial hypothesis of an Atlantic glacial entry route into North America.


Assuntos
Povo Asiático/genética , DNA Mitocondrial/genética , Emigração e Imigração/história , Haplótipos/genética , Indígenas Norte-Americanos/genética , Canadá , Colômbia , Variação Genética/genética , Genética Populacional , História Antiga , Humanos , Filogenia , Análise de Sequência de DNA , Estados Unidos
14.
Genes (Basel) ; 12(9)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34573435

RESUMO

Mexico is a rich source for anthropological and population genetic studies with high diversity in ethnic and linguistic groups. The country witnessed the rise and fall of major civilizations, including the Maya and Aztec, but resulting from European colonization, the population landscape has dramatically changed. Today, the majority of Mexicans do not identify themselves as Indigenous but as admixed, and appear to have very little in common with their pre-Columbian predecessors. However, when the maternally inherited mitochondrial (mt)DNA is investigated in the modern Mexican population, this is not the case. Control region sequences of 2021 samples deriving from all over the country revealed an overwhelming Indigenous American legacy, with almost 90% of mtDNAs belonging to the four major pan-American haplogroups A2, B2, C1, and D1. This finding supports a very low European contribution to the Mexican gene pool by female colonizers and confirms the effectiveness of employing uniparental markers as a tool to reconstruct a country's history. In addition, the distinct frequency and dispersal patterns of Indigenous American and West Eurasian clades highlight the benefit such large and country-wide databases provide for studying the impact of colonialism from a female perspective and population stratification. The importance of geographical database subsets not only for forensic application is clearly demonstrated.


Assuntos
DNA Mitocondrial/genética , Genética Populacional , População Negra/genética , Feminino , Pool Gênico , Haplótipos , Humanos , Masculino , México , Filogeografia , Controle de Qualidade , População Branca/genética , Indígena Americano ou Nativo do Alasca/genética
15.
Front Genet ; 12: 819337, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069708

RESUMO

Mongolia is located in a strategic position at the eastern edge of the Eurasian Steppe. Nomadic populations moved across this wide area for millennia before developing more sedentary communities, extended empires, and complex trading networks, which connected western Eurasia and eastern Asia until the late Medieval period. We provided a fine-grained portrait of the mitochondrial DNA (mtDNA) variation observed in present-day Mongolians and capable of revealing gene flows and other demographic processes that took place in Inner Asia, as well as in western Eurasia. The analyses of a novel dataset (N = 2,420) of mtDNAs highlighted a clear matrilineal differentiation within the country due to a mixture of haplotypes with eastern Asian (EAs) and western Eurasian (WEu) origins, which were differentially lost and preserved. In a wider genetic context, the prevalent EAs contribution, larger in eastern and central Mongolian regions, revealed continuous connections with neighboring Asian populations until recent times, as attested by the geographically restricted haplotype-sharing likely facilitated by the Genghis Khan's so-called Pax Mongolica. The genetic history beyond the WEu haplogroups, notably detectable on both sides of Mongolia, was more difficult to explain. For this reason, we moved to the analysis of entire mitogenomes (N = 147). Although it was not completely possible to identify specific lineages that evolved in situ, two major changes in the effective (female) population size were reconstructed. The more recent one, which began during the late Pleistocene glacial period and became steeper in the early Holocene, was probably the outcome of demographic events connected to western Eurasia. The Neolithic growth could be easily explained by the diffusion of dairy pastoralism, as already proposed, while the late glacial increase indicates, for the first time, a genetic connection with western Eurasian refuges, as supported by the unusual high frequency and internal sub-structure in Mongolia of haplogroup H1, a well-known post-glacial marker in Europe. Bronze Age events, without a significant demographic impact, might explain the age of some mtDNA haplogroups. Finally, a diachronic comparison with available ancient mtDNAs made it possible to link six mitochondrial lineages of present-day Mongolians to the timeframe and geographic path of the Silk Route.

16.
Forensic Sci Int Genet ; 42: 1-7, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31195186

RESUMO

Although autosomal DNA testing has been available for a number of years, its use to reconstruct genetic profiles of people that lived centuries in the past is relatively recent and there are no published cases where it was employed to verify a kinship relation, likely to be an alleged paternity, that occurred one and a half century ago. DNA testing has already been employed to study the ancestry and posterity of Joseph Smith Jr., founder of the Latter-day Saint (Mormon) movement. Thanks to information found on the paternally inherited Y chromosome, a number of alleged paternities have been disproved, but obviously this analysis is not effective for alleged daughters. Likewise, his reconstructed mitogenome sequence, reported here for the first time, provides information about his maternal ancestry, but is useless in any paternity questions due to the strict maternal inheritance. Among all the children attributed to Joseph Smith Jr., Josephine Lyon, born in 1844, is perhaps the most frequently mentioned. In the current study, 56 individuals, mostly direct descendants of Joseph Smith Jr. and Josephine Lyon, had their autosomal DNA tested to verify Josephine's biological paternity. Nearly 600,000 autosomal SNPs from each subject were typed and detailed genealogical data were compiled. The absence of shared DNA between Josephine's grandson and Joseph Smith Jr.'s five great-grandchildren together with various amounts of autosomal DNA shared by the same individual with four other relatives of Windsor Lyon is a clear indication that Josephine was not related to the Smith, but to the Lyon's family. These inferences were also verified using kinship analyses and likelihood ratio calculations.


Assuntos
Impressões Digitais de DNA , Paternidade , Linhagem , Polimorfismo de Nucleotídeo Único , Igreja de Jesus Cristo dos Santos dos Últimos Dias/história , DNA Mitocondrial/genética , Triagem e Testes Direto ao Consumidor , Pessoas Famosas , Feminino , Genótipo , História do Século XIX , Humanos , Funções Verossimilhança , Masculino , Casamento , Estados Unidos
17.
Sci Rep ; 7: 46044, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28387361

RESUMO

Human mitochondrial DNA haplogroup U is among the initial maternal founders in Southwest Asia and Europe and one that best indicates matrilineal genetic continuity between late Pleistocene hunter-gatherer groups and present-day populations of Europe. While most haplogroup U subclades are older than 30 thousand years, the comparatively recent coalescence time of the extant variation of haplogroup U7 (~16-19 thousand years ago) suggests that its current distribution is the consequence of more recent dispersal events, despite its wide geographical range across Europe, the Near East and South Asia. Here we report 267 new U7 mitogenomes that - analysed alongside 100 published ones - enable us to discern at least two distinct temporal phases of dispersal, both of which most likely emanated from the Near East. The earlier one began prior to the Holocene (~11.5 thousand years ago) towards South Asia, while the later dispersal took place more recently towards Mediterranean Europe during the Neolithic (~8 thousand years ago). These findings imply that the carriers of haplogroup U7 spread to South Asia and Europe before the suggested Bronze Age expansion of Indo-European languages from the Pontic-Caspian Steppe region.


Assuntos
DNA Mitocondrial/genética , Evolução Molecular , Haplótipos/genética , Teorema de Bayes , Geografia , Humanos , Mutação/genética , Filogenia
19.
Urol Oncol ; 7(3): 105-9, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12474543

RESUMO

BACKGROUND: A number of risk factors have been implicated for prostate cancer, with dietary fat intake the most commonly accepted modifiable risk. OBJECTIVE: To assess the relationship between health risk indicators (e.g., cholesterol, blood pressure, blood sugar, and percent body fat), which are related to dietary fat intake, and prostate-specific antigen (PSA) scores. Relationships between demographics and select behaviors (e.g., cigarette smoking and physical activity) with PSA scores are also considered. The setting was the 1999 Huntsman World Senior Games in St. George, Utah. Subjects' analysis is based on 536 men aged 50 years and older completing a questionnaire and receiving free screening, including a PSA. METHODS: Frequency distributions, multiple regression techniques, and the Spearman correlation coefficients. RESULTS: A positive relationship was observed between increasing age groups and mean PSA scores (Cochran-Mantel-Haenszel Chi-Square: 53.8, p < 0.0001). After adjusting for age, none of the personal risk factor indicators (i.e., cholesterol, blood pressure, blood sugar, and percent body fat) were related to PSA scores. Other factors not related to PSA scores after adjusting for age were race, marital status, education, history of chronic disease, cigarette smoking, alcohol use, and physical activity. CONCLUSION: Because risk indicators such as cholesterol, blood pressure, blood sugar, and percent body fat are associated with dietary fat intake, their failure to be related with PSA scores makes it further unclear how this commonly accepted modifiable risk factor for prostate cancer may influence the disease.


Assuntos
Indicadores Básicos de Saúde , Estilo de Vida , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/epidemiologia , Esportes , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Consumo de Bebidas Alcoólicas , Biomarcadores Tumorais/sangue , Pressão Sanguínea , Escolaridade , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Fumar , Fatores Socioeconômicos , Estados Unidos
20.
PLoS One ; 8(7): e70492, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936216

RESUMO

The current human mitochondrial (mtDNA) phylogeny does not equally represent all human populations but is biased in favour of representatives originally from north and central Europe. This especially affects the phylogeny of some uncommon West Eurasian haplogroups, including I and W, whose southern European and Near Eastern components are very poorly represented, suggesting that extensive hidden phylogenetic substructure remains to be uncovered. This study expanded and re-analysed the available datasets of I and W complete mtDNA genomes, reaching a comprehensive 419 mitogenomes, and searched for precise correlations between the ages and geographical distributions of their numerous newly identified subclades with events of human dispersal which contributed to the genetic formation of modern Europeans. Our results showed that haplogroups I (within N1a1b) and W originated in the Near East during the Last Glacial Maximum or pre-warming period (the period of gradual warming between the end of the LGM, ∼19 ky ago, and the beginning of the first main warming phase, ∼15 ky ago) and, like the much more common haplogroups J and T, may have been involved in Late Glacial expansions starting from the Near East. Thus our data contribute to a better definition of the Late and postglacial re-peopling of Europe, providing further evidence for the scenario that major population expansions started after the Last Glacial Maximum but before Neolithic times, but also evidencing traces of diffusion events in several I and W subclades dating to the European Neolithic and restricted to Europe.


Assuntos
DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Haplótipos , Filogenia , Teorema de Bayes , DNA Mitocondrial/química , DNA Mitocondrial/classificação , Europa (Continente) , Variação Genética , Genética Populacional , Geografia , Humanos , Oriente Médio , Dados de Sequência Molecular , Análise de Sequência de DNA , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA