Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Invertebr Pathol ; 184: 107603, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33971219

RESUMO

The aetiological agent Perkinsus olseni is globally recognised as a major threat for shellfish production considering its wide geographical distribution across Asia, Europe, Australia and South America. Another species, Perkinsus chesapeaki, which has never been known to be associated with significant mortality events, was recently detected along French coasts infecting clam populations sporadically in association with P. olseni. Identifying potential cryptic infections affecting Ruditapes philippinarum is essential to develop appropriate host resource management strategies. Here, we developed a molecular method based on duplex real-time quantitative PCR for the simultaneous detection of these two parasites, P. olseni and P. chesapeaki, in the different clam tissues: gills, digestive gland, foot, mantle, adductor muscle and the rest of the soft body. We firstly checked the presence of possible PCR inhibitors in host tissue samples. The qPCR reactions were inhibited depending on the nature of the host organ. The mantle and the rest of the soft body have a high inhibitory effect from threshold of host gDNA concentration of 2 ng.µL-1, the adductor muscle and the foot have an intermediate inhibition of 5 ng.µL-1, and the gills and digestive gland do not show any inhibition of the qPCR reaction even at the highest host gDNA concentration of 20 ng.µL-1. Then, using the gills as a template, the suitability of the molecular technique was checked in comparison with the Ray's Fluid Thioglycolate Medium methodology recommended by the World Organisation for Animal Health. The duplex qPCR method brought new insights and unveiled cryptic infections as the co-occurrence of P. olseni and P. chesapeaki from in situ tissue samples in contrast to the RFTM diagnosis. The development of this duplex qPCR method is a fundamental work to monitor in situ co-infections that will lead to optimised resource management and conservation strategies to deal with emerging diseases.


Assuntos
Alveolados/isolamento & purificação , Bivalves/parasitologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Alveolados/genética , Animais , Especificidade da Espécie
2.
Appl Environ Microbiol ; 86(20)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32769182

RESUMO

We sought to identify and study the antibiofilm protein secreted by the marine bacterium Pseudoalteromonas sp. strain 3J6. The latter is active against marine and terrestrial bacteria, including Pseudomonas aeruginosa clinical strains forming different biofilm types. Several amino acid sequences were obtained from the partially purified antibiofilm protein, named alterocin. The Pseudoalteromonas sp. 3J6 genome was sequenced, and a candidate alt gene was identified by comparing the genome-encoded proteins to the sequences from purified alterocin. Expressing the alt gene in another nonactive Pseudoalteromonas sp. strain, 3J3, demonstrated that it is responsible for the antibiofilm activity. Alterocin is a 139-residue protein that includes a predicted 20-residue signal sequence, which would be cleaved off upon export by the general secretion system. No sequence homology was found between alterocin and proteins of known functions. The alt gene is not part of an operon and adjacent genes do not seem related to alterocin production, immunity, or regulation, suggesting that these functions are not fulfilled by devoted proteins. During growth in liquid medium, the alt mRNA level peaked during the stationary phase. A single promoter was experimentally identified, and several inverted repeats could be binding sites for regulators. alt genes were found in about 30% of the Pseudoalteromonas genomes and in only a few instances of other marine bacteria of the Hahella and Paraglaciecola genera. Comparative genomics yielded the hypothesis that alt gene losses occurred within the Pseudoalteromonas genus. Overall, alterocin is a novel kind of antibiofilm protein of ecological and biotechnological interest.IMPORTANCE Biofilms are microbial communities that develop on solid surfaces or interfaces and are detrimental in a number of fields, including for example food industry, aquaculture, and medicine. In the latter, antibiotics are insufficient to clear biofilm infections, leading to chronic infections such as in the case of infection by Pseudomonas aeruginosa of the lungs of cystic fibrosis patients. Antibiofilm molecules are thus urgently needed to be used in conjunction with conventional antibiotics, as well as in other fields of application, especially if they are environmentally friendly molecules. Here, we describe alterocin, a novel antibiofilm protein secreted by a marine bacterium belonging to the Pseudoalteromonas genus, and its gene. Alterocin homologs were found in about 30% of Pseudoalteromonas strains, indicating that this new family of antibiofilm proteins likely plays an important albeit nonessential function in the biology of these bacteria. This study opens up the possibility of a variety of applications.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Pseudoalteromonas/genética , Proteínas de Bactérias/biossíntese
4.
Front Microbiol ; 14: 1250947, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260876

RESUMO

The parasitic species Perkinsus olseni (= atlanticus) (Perkinsea, Alveolata) infects a wide range of mollusc species and is responsible for mortality events and economic losses in the aquaculture industry and fisheries worldwide. Thus far, most studies conducted in this field have approached the problem from a "one parasite-one disease" perspective, notably with regards to commercially relevant clam species, while the impact of other Perkinsus species should also be considered as it could play a key role in the disease phenotype and dynamics. Co-infection of P. olseni and P. chesapeaki has already been sporadically described in Manila clam populations in Europe. Here, we describe for the first time the parasitic distribution of two Perkinsus species, P. olseni and P. chesapeaki, in individual clam organs and in five different locations across Arcachon Bay (France), using simultaneous in situ detection by quantitative PCR (qPCR) duplex methodology. We show that P. olseni single-infection largely dominated prevalence (46-84%) with high intensities of infection (7.2 to 8.5 log-nb of copies. g-1of wet tissue of Manila clam) depending on location, suggesting that infection is driven by the abiotic characteristics of stations and physiological states of the host. Conversely, single P. chesapeaki infections were observed in only two sampling stations, Ile aux Oiseaux and Gujan, with low prevalences 2 and 14%, respectively. Interestingly, the co-infection by both Perkinsus spp., ranging in prevalence from 12 to 34%, was distributed across four stations of Arcachon Bay, and was detected in one or two organs maximum. Within these co-infected organs, P. olseni largely dominated the global parasitic load. Hence, the co-infection dynamics between P. olseni and P. chesapeaki may rely on a facilitating role of P. olseni in developing a primary infection which in turn may help P. chesapeaki infect R. philippinarum as a reservoir for a preferred host. This ecological study demonstrates that the detection and quantification of both parasitic species, P. olseni and P. chesapeaki, is essential and timely in resolving cryptic infections and their consequences on individual hosts and clam populations.

5.
Microbiome ; 6(1): 60, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29587830

RESUMO

BACKGROUND: Holobionts have a digestive microbiota with catabolic abilities allowing the degradation of complex dietary compounds for the host. In terrestrial herbivores, the digestive microbiota is known to degrade complex polysaccharides from land plants while in marine herbivores, the digestive microbiota is poorly characterized. Most of the latter are generalists and consume red, green, and brown macroalgae, three distinct lineages characterized by a specific composition in complex polysaccharides, which represent half of their biomass. Subsequently, each macroalga features a specific epiphytic microbiota, and the digestive microbiota of marine herbivores is expected to vary with a monospecific algal diet. We investigated the effect of four monospecific diets (Palmaria palmata, Ulva lactuca, Saccharina latissima, Laminaria digitata) on the composition and specificity of the digestive microbiota of a generalist marine herbivore, the abalone, farmed in a temperate coastal area over a year. The microbiota from the abalone digestive gland was sampled every 2 months and explored using metabarcoding. RESULTS: Diversity and multivariate analyses showed that patterns of the microbiota were significantly linked to seasonal variations of contextual parameters but not directly to a specific algal diet. Three core genera: Psychrilyobacter, Mycoplasma, and Vibrio constantly dominated the microbiota in the abalone digestive gland. Additionally, a less abundant and diet-specific core microbiota featured genera representing aerobic primary degraders of algal polysaccharides. CONCLUSIONS: This study highlights the establishment of a persistent core microbiota in the digestive gland of the abalone since its juvenile state and the presence of a less abundant and diet-specific core community. While composed of different microbial taxa compared to terrestrial herbivores, the digestive gland constitutes a particular niche in the abalone holobiont, where bacteria (i) may cooperate to degrade algal polysaccharides to products assimilable by the host or (ii) may have acquired these functions through gene transfer from the aerobic algal microbiota.


Assuntos
Microbioma Gastrointestinal , Gastrópodes/microbiologia , Herbivoria , Estações do Ano , Ração Animal , Animais , Bactérias/classificação , Bactérias/genética , Polissacarídeos
6.
ISME J ; 10(1): 51-63, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26114888

RESUMO

Like most eukaryotes, brown algae live in association with bacterial communities that frequently have beneficial effects on their development. Ectocarpus is a genus of small filamentous brown algae, which comprises a strain that has recently colonized freshwater, a rare transition in this lineage. We generated an inventory of bacteria in Ectocarpus cultures and examined the effect they have on acclimation to an environmental change, that is, the transition from seawater to freshwater medium. Our results demonstrate that Ectocarpus depends on bacteria for this transition: cultures that have been deprived of their associated microbiome do not survive a transfer to freshwater, but restoring their microflora also restores the capacity to acclimate to this change. Furthermore, the transition between the two culture media strongly affects the bacterial community composition. Examining a range of other closely related algal strains, we observed that the presence of two bacterial operational taxonomic units correlated significantly with an increase in low salinity tolerance of the algal culture. Despite differences in the community composition, no indications were found for functional differences in the bacterial metagenomes predicted to be associated with algae in the salinities tested, suggesting functional redundancy in the associated bacterial community. Our study provides an example of how microbial communities may impact the acclimation and physiological response of algae to different environments, and thus possibly act as facilitators of speciation. It paves the way for functional examinations of the underlying host-microbe interactions, both in controlled laboratory and natural conditions.


Assuntos
Aclimatação/fisiologia , Água Doce/microbiologia , Interações Microbianas/fisiologia , Phaeophyceae/microbiologia , Água do Mar/microbiologia , Bactérias/genética , Metagenoma , Interações Microbianas/genética , Microbiota/genética , Phaeophyceae/fisiologia , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia
7.
Anticancer Res ; 23(6C): 4865-70, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14981937

RESUMO

MATERIALS AND METHODS: To investigate the genetic alterations that occur during the development of renal cell carcinomas (RCC), we used 20 microsatellite markers to examine 48 renal cell carcinomas for allelic losses of chromosome arm 14q. RESULTS: We identified 14q LOH in 31% of cases. Twelve tumors were entirely lacking the 14q arm and three were partially deleted. For the first time on fresh tumors, these findings led to the delineation of a 17.9 Mb region between markers D14S281 and D14S277 that is commonly deleted. Interestingly, this segment overlaps with the previously reported 37.8 Mb commonly deleted region. CONCLUSION: Taken together these results allowed us to define a new 2.8 Mb segment between markers D14S588 and D14S277 that potentially harbors a tumor suppressor gene involved in the development of RCC which can be reached by positional cloning.


Assuntos
Carcinoma de Células Renais/genética , Cromossomos Humanos Par 14 , Genes Supressores de Tumor , Neoplasias Renais/genética , Perda de Heterozigosidade/genética , Adulto , Idoso , Feminino , Marcadores Genéticos , Humanos , Masculino , Pessoa de Meia-Idade
8.
FEMS Microbiol Ecol ; 88(2): 231-49, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24862161

RESUMO

Synechococcus, one of the most abundant cyanobacteria in marine ecosystems, displays a broad pigment diversity. However, the in situ distribution of pigment types remains largely unknown. In this study, we combined flow cytometry cell sorting, whole-genome amplification, and fosmid library construction to target a genomic region involved in light-harvesting complex (phycobilisome) biosynthesis and regulation. Synechococcus community composition and relative contamination by heterotrophic bacteria were assessed at each step of the pipeline using terminal restriction fragment length polymorphism targeting the petB and 16S rRNA genes, respectively. This approach allowed us to control biases inherent to each method and select reliable WGA products to construct a fosmid library from a natural sample collected off Roscoff (France). Sequencing of 25 fosmids containing the targeted region led to the assembly of whole or partial phycobilisome regions. Most contigs were assigned to clades I and IV consistent with the known dominance of these clades in temperate coastal waters. However, one of the fosmids contained genes distantly related to their orthologs in reference genomes, suggesting that it belonged to a novel phylogenetic clade. Altogether, this study provides novel insights into Synechococcus community structure and pigment type diversity at a representative coastal station of the English Channel.


Assuntos
Genoma Bacteriano , Metagenômica/métodos , Ficobilissomas/biossíntese , Synechococcus/genética , Separação Celular , Citometria de Fluxo , França , Biblioteca Gênica , Luz , Filogenia , Synechococcus/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA