Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Theor Appl Genet ; 135(3): 785-801, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34821982

RESUMO

KEY MESSAGE: The gene underlying the melon fruit shape QTL fsqs8.1 is a member of the Ovate Family Proteins. Variation in fruit morphology is caused by changes in gene expression likely due to a cryptic structural variation in this locus. Melon cultivars have a wide range of fruit morphologies. Quantitative trait loci (QTL) have been identified underlying such diversity. This research focuses on the fruit shape QTL fsqs8.1, previously detected in a cross between the accession PI 124112 (CALC, producing elongated fruit) and the cultivar 'Piel de Sapo' (PS, producing oval fruit). The CALC fsqs8.1 allele induced round fruit shape, being responsible for the transgressive segregation for this trait observed in that population. In fact, the introgression line CALC8-1, carrying the fsqs8.1 locus from CALC into the PS genetic background, produced perfect round fruit. Following a map-based cloning approach, we found that the gene underlying fsqs8.1 is a member of the Ovate Family Proteins (OFP), CmOFP13, likely a homologue of AtOFP1 and SlOFP20 from Arabidopsis thaliana and tomato, respectively. The induction of the round shape was due to the higher expression of the CALC allele at the early ovary development stage. The fsqs8.1 locus showed an important structural variation, being CmOFP13 surrounded by two deletions in the CALC genome. The deletions are present at very low frequency in melon germplasm. Deletions and single nucleotide polymorphisms in the fsqs8.1 locus could not be not associated with variation in fruit shape among different melon accessions, what indicates that other genetic factors should be involved to induce the CALC fsqs8.1 allele effects. Therefore, fsqs8.1 is an example of a cryptic variation that alters gene expression, likely due to structural variation, resulting in phenotypic changes in melon fruit morphology.


Assuntos
Cucurbitaceae , Solanum lycopersicum , Mapeamento Cromossômico , Cucurbitaceae/genética , Frutas , Solanum lycopersicum/genética , Locos de Características Quantitativas
2.
J Exp Bot ; 68(3): 391-401, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28025315

RESUMO

COP (coat protein) I-coated vesicles mediate intra-Golgi transport and retrograde transport from the Golgi to the endoplasmic reticulum. These vesicles form through the action of the small GTPase ADP-ribosylation factor 1 (ARF1) and the COPI heptameric protein complex (coatomer), which consists of seven subunits (α-, ß-, ß'-, γ-, δ-, ε- and ζ-COP). In contrast to mammals and yeast, several isoforms for coatomer subunits, with the exception of γ and δ, have been identified in Arabidopsis. To understand the role of COPI proteins in plant biology, we have identified and characterized a loss-of-function mutant of α2-COP, an Arabidopsis α-COP isoform. The α2-cop mutant displayed defects in plant growth, including small rosettes, stems and roots and mislocalization of p24δ5, a protein of the p24 family containing a C-terminal dilysine motif involved in COPI binding. The α2-cop mutant also exhibited abnormal morphology of the Golgi apparatus. Global expression analysis of the α2-cop mutant revealed altered expression of plant cell wall-associated genes. In addition, a strong upregulation of SEC31A, which encodes a subunit of the COPII coat, was observed in the α2-cop mutant; this also occurs in a mutant of a gene upstream of COPI assembly, GNL1, which encodes an ARF-guanine nucleotide exchange factor (GEF). These findings suggest that loss of α2-COP affects the expression of secretory pathway genes.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteína Coatomer/genética , Proteína Coatomer/metabolismo , Ubiquitina-Proteína Ligases/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/genética , Retículo Endoplasmático/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
Plant Cell ; 24(6): 2483-96, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22739828

RESUMO

Abscisic acid (ABA) is a key hormone for plant growth, development, and stress adaptation. Perception of ABA through four types of receptors has been reported. We show here that impairment of ABA perception through the PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) branch reduces vegetative growth and seed production and leads to a severe open stomata and ABA-insensitive phenotype, even though other branches for ABA perception remain functional. An Arabidopsis thaliana sextuple mutant impaired in six PYR/PYL receptors, namely PYR1, PYL1, PYL2, PYL4, PYL5, and PYL8, was able to germinate and grow even on 100 µM ABA. Whole-rosette stomatal conductance (Gst) measurements revealed that leaf transpiration in the sextuple pyr/pyl mutant was higher than in the ABA-deficient aba3-1 or ABA-insensitive snrk2.6 mutants. The gradually increasing Gst values of plants lacking three, four, five, and six PYR/PYLs indicate quantitative regulation of stomatal aperture by this family of receptors. The sextuple mutant lacked ABA-mediated activation of SnRK2s, and ABA-responsive gene expression was dramatically impaired as was reported in snrk2.2/2.3/2.6. In summary, these results show that ABA perception by PYR/PYLs plays a major role in regulation of seed germination and establishment, basal ABA signaling required for vegetative and reproductive growth, stomatal aperture, and transcriptional response to the hormone.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Membrana Transportadoras/genética , Estômatos de Plantas/fisiologia , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Fenótipo , Folhas de Planta/fisiologia , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
4.
Dev Biol ; 333(2): 251-62, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19576878

RESUMO

Plant floral transition is a major developmental switch regulated by an integrated network of pathways. Arabidopsis FLOWERING LOCUS K (FLK), a protein with three KH RNA-binding domains, operates in the autonomous flowering-promotive pathway by decreasing the transcript levels of the key flowering repressor FLOWERING LOCUS C (FLC). Here we report that PEPPER (PEP), an FLK paralog previously shown to affect vegetative and pistil development, antagonizes FLK by positively regulating FLC. Lack of PEP function rescues the flk late-flowering phenotype with a concomitant decrease in FLC RNA levels. Loss of HUA2, another FLC activator encoding an RNA-binding protein, further rescues flk, being flk hua2 pep triple mutants virtually wild-type regarding flowering time. Consistently, PEP overexpression determines high levels of FLC transcripts and flowering delay. Genetic and molecular analyses indicate that FLK and PEP act independently of FCA, another important FLC repressor in the autonomous pathway. In addition, we present data suggesting that PEP may affect FLC expression at both transcriptional and post-transcriptional levels. Overall, our results uncover PEP as a new factor for FLC upregulation, underscoring the importance of RNA-binding activities during developmental timing of flowering.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Mutação , Proteínas de Ligação a RNA/genética , Alelos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Núcleo Celular/metabolismo , Giberelinas/metabolismo , Proteínas de Domínio MADS/fisiologia , Fenótipo , Estrutura Terciária de Proteína , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
5.
Front Plant Sci ; 11: 1106, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793263

RESUMO

The present work describes the effects on iron homeostasis when copper transport was deregulated in Arabidopsis thaliana by overexpressing high affinity copper transporters COPT1 and COPT3 (COPTOE ). A genome-wide analysis conducted on COPT1OE plants, highlighted that iron homeostasis gene expression was affected under both copper deficiency and excess. Among the altered genes were those encoding the iron uptake machinery and their transcriptional regulators. Subsequently, COPTOE seedlings contained less iron and were more sensitive than controls to iron deficiency. The deregulation of copper (I) uptake hindered the transcriptional activation of the subgroup Ib of basic helix-loop-helix (bHLH-Ib) factors under copper deficiency. Oppositely, copper excess inhibited the expression of the master regulator FIT but activated bHLH-Ib expression in COPTOE plants, in both cases leading to the lack of an adequate iron uptake response. As copper increased in the media, iron (III) was accumulated in roots, and the ratio iron (III)/iron (II) was increased in COPTOE plants. Thus, iron (III) overloading in COPTOE roots inhibited local iron deficiency responses, aimed to metal uptake from soil, leading to a general lower iron content in the COPTOE seedlings. These results emphasized the importance of appropriate spatiotemporal copper uptake for iron homeostasis under non-optimal copper supply. The understanding of the role of copper uptake in iron metabolism could be applied for increasing crops resistance to iron deficiency.

6.
Plant Physiol ; 141(4): 1519-32, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16778015

RESUMO

Polyamine oxidase (PAO) is a flavin adenine dinucleotide-dependent enzyme involved in polyamine catabolism. Animal PAOs oxidize spermine (Spm), spermidine (Spd), and/or their acetyl derivatives to produce H2O2, an aminoaldehyde, and Spd or putrescine, respectively, thus being involved in a polyamine back-conversion pathway. On the contrary, plant PAOs that have been characterized to date oxidize Spm and Spd to produce 1,3-diaminopropane, H2O2, and an aminoaldehyde and are therefore involved in the terminal catabolism of polyamines. A database search within the Arabidopsis (Arabidopsis thaliana) genome sequence showed the presence of a gene (AtPAO1) encoding for a putative PAO with 45% amino acid sequence identity with maize (Zea mays) PAO. The AtPAO1 cDNA was isolated and cloned in a vector for heterologous expression in Escherichia coli. The recombinant protein was purified by affinity chromatography on guazatine-Sepharose 4B and was shown to be a flavoprotein able to oxidize Spm, norspermine, and N1-acetylspermine with a pH optimum at 8.0. Analysis of the reaction products showed that AtPAO1 produces Spd from Spm and norspermidine from norspermine, demonstrating a substrate oxidation mode similar to that of animal PAOs. To our knowledge, AtPAO1 is the first plant PAO reported to be involved in a polyamine back-conversion pathway.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sequência de Bases , Clonagem Molecular , DNA Complementar/análise , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Espermidina/análogos & derivados , Espermidina/metabolismo , Espermina/análogos & derivados , Espermina/metabolismo , Poliamina Oxidase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA