Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 280: 116523, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850707

RESUMO

In recent years micro- and nanoplastics and metal-oxide nanomaterials have been found in several environmental compartments. The Antarctic soft clam Laternula elliptica is an endemic Antarctic species having a wide distribution in the Southern Ocean. Being a filter-feeder, it could act as suitable bioindicator of pollution from nanoparticles also considering its sensitivity to various sources of stress. The present study aims to assess the impact of polystyrene nanoparticles (PS-NP) and the nanometal titanium-dioxide (n-TiO2) on genome-wide transcript expression of L. elliptica either alone and in combination and at two toxicological relevant concentrations (5 and 50 µg/L) during 96 h exposure. Transcript-target qRT-PCR was performed with the aim to identify suitable biomarkers of exposure and effects. As expected, at the highest concentration tested, the clustering was clearer between control and exposed clams. A total of 221 genes resulted differentially expressed in exposed clams and control ones, and 21 of them had functional annotation such as ribosomal proteins, antioxidant, ion transport (osmoregulation), acid-base balance, immunity, lipid metabolism, cell adhesion, cytoskeleton, apoptosis, chromatin condensation and cell signaling. At functional level, relevant transcripts were shared among some treatments and could be considered as general stress due to nanoparticle exposure. After applying transcript-target approach duplicating the number of clam samples, four ecologically relevant transcripts were revealed as biomarkers for PS-NP, n-TiO2 and their combination at 50 µg/L, that could be used for monitoring clams' health status in different Antarctic localities.


Assuntos
Bivalves , Nanopartículas , Titânio , Transcriptoma , Poluentes Químicos da Água , Animais , Bivalves/efeitos dos fármacos , Bivalves/genética , Titânio/toxicidade , Regiões Antárticas , Nanopartículas/toxicidade , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Biomarcadores/metabolismo , Poliestirenos/toxicidade , Monitoramento Ambiental/métodos
2.
Braz J Microbiol ; 55(1): 487-497, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38157148

RESUMO

The filter feeder clam Laternula elliptica is a key species in the Antarctic ecosystem. As a stenothermal benthic species, it has a poor capacity for adaptation to small temperature variations. Despite their ecological importance and sensitivity to climate change, studies on their microbiomes are lacking. The goal of this study was to characterize the bacterial communities of L. elliptica and the tissues variability of this microbiome to provide an initial insight of host-microbiota interactions. We investigated the diversity and taxonomic composition of bacterial communities of L. elliptica from five regions of the body using high-throughput 16S rRNA gene sequencing. The results showed that the microbiome of L. elliptica tended to differ from that of the surrounding seawater samples. However, there were no significant differences in the microbial composition between the body sites, and only two OTUs were present in all samples, being considered core microbiome (genus Moritella and Polaribacter). No significant differences were detected in diversity indexes among tissues (mean 626.85 for observed OTUs, 628.89 Chao1, 5.42 Shannon, and 0.87 Simpson). Rarefaction analysis revealed that most tissues reached a plateau of OTU number according to sample increase, with the exception of Siphon samples. Psychromonas and Psychrilyobacter were particularly abundant in L. elliptica whereas Fluviicola dominated seawater and siphons. Typical polar bacteria were Polaribacter, Shewanella, Colwellia, and Moritella. We detected the prevalence of pathogenic bacterial sequences, particularly in the family Arcobacteraceae, Pseudomonadaceae, and Mycoplasmataceae. The prokaryotic diversity was similar among tissues, as well as their taxonomic composition, suggesting a homogeneity of the microbiome along L. elliptica body. The Antarctic clam population can be used to monitor the impact of human activity in areas near Antarctic stations that discharge wastewater.


Assuntos
Bivalves , Microbiota , Animais , Humanos , Regiões Antárticas , RNA Ribossômico 16S/genética , Bivalves/genética , Água do Mar , Bactérias/genética
3.
Mar Environ Res ; 198: 106539, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718522

RESUMO

Nanoplastics and engineering nanomaterials (ENMs) are contaminants of emerging concern (CECs), increasingly being detected in the marine environment and recognized as a potential threat for marine biota at the global level including in polar areas. Few studies have assessed the impact of these anthropogenic nanoparticles in the microbiome of marine invertebrates, however combined exposure resembling natural scenarios has been overlooked. The present study aimed to evaluate the single and combined effects of polystyrene nanoparticles (PS NP) as proxy for nanoplastics and nanoscale titanium dioxide (nano-TiO2) on the prokaryotic communities associated with the gill tissue of the Antarctic soft-shell clam Laternula elliptica, a keystone species of marine benthos Wild-caught specimens were exposed to two environmentally relevant concentrations of carboxylated PS NP (PS-COOH NP, ∼62 nm size) and nano-TiO2 (Aeroxide P25, ∼25 nm) as 5 and 50 µg/L either single and combined for 96h in a semi-static condition.Our findings show a shift in microbiome composition in gills of soft-shell clams exposed to PS NP and nano-TiO2 either alone and in combination with a decrease in the relative abundance of OTU1 (Spirochaetaceae). In addition, an increase of gammaproteobacterial OTUs affiliated to MBAE14 and Methylophagaceae (involved in ammonia denitrification and associated with low-quality water), and the OTU Colwellia rossensis (previously recorded in polluted waters) was observed. Our results suggest that nanoplastics and nano-TiO2 alone and in combination induce alterations in microbiome composition by promoting the increase of negative taxa over beneficial ones in the gills of the Antarctic soft-shell clam. An increase of two low abundance OTUs in PS-COOH NPs exposed clams was also observed. A predicted gene function analysis revealed that sugar, lipid, protein and DNA metabolism were the main functions affected by either PS-COOH NP and nano-TiO2 exposure. The molecular functions involved in the altered affiliated OTUs are novel for nano-CEC exposures.


Assuntos
Bivalves , Brânquias , Microbiota , Poluentes Químicos da Água , Animais , Microbiota/efeitos dos fármacos , Brânquias/efeitos dos fármacos , Brânquias/microbiologia , Bivalves/efeitos dos fármacos , Bivalves/microbiologia , Poluentes Químicos da Água/toxicidade , Regiões Antárticas , Nanoestruturas/toxicidade , Titânio/toxicidade , Nanopartículas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA