Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 36(4): e22224, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35218575

RESUMO

Yes-associated protein (YAP), a central effector in the Hippo pathway, is involved in the regulation of organ size, stem cell self-renewal, and tissue regeneration. In this study, we observed YAP activation in patients with alcoholic steatosis, hepatitis, and cirrhosis. Accumulation of this protein in the nucleus was also observed in murine livers that were damaged after chronic-plus-single binge or moderate ethanol ingestion combined with carbon tetrachloride intoxication (ethanol/CCl4 ). To understand the role of this transcriptional coactivator in alcohol-related liver injury, we knocked out the Yap1 gene in hepatocytes of floxed homozygotes through adeno-associated virus (AAV8)-mediated deletion utilizing Cre recombinase. Yap1 hepatocyte-specific knockouts (KO) exhibited hemorrhage, massive hepatic necrosis, enhanced oxidative stress, elevated hypoxia, and extensive infiltration of CD11b+ inflammatory cells into hepatic microenvironments rich for connective tissue growth factor (Ctgf) during ethanol/CCl4 -induced liver damage. Analysis of whole-genome transcriptomics indicated upregulation of genes involved in hypoxia and extracellular matrix (ECM) remodeling, whereas genes related to hepatocyte proliferation, progenitor cell activation, and ethanol detoxification were downregulated in the damaged livers of Yap1 KO. Acetaldehyde dehydrogenase (Aldh)1a1, a gene that encodes a detoxification enzyme for aldehyde substrates, was identified as a potential YAP target because this gene could be transcriptionally activated by a hyperactive YAP mutant. The ectopic expression of the human ALDH1A1 gene caused increase in hepatocyte proliferation and decrease in hepatic necrosis, oxidative stress, ECM remodeling, and inflammation during ethanol/CCl4 -induced liver damage. Taken together, these observations indicated that YAP was crucial for liver repair during alcohol-associated injury. Its regulation of ALDH1A1 represents a new link in liver regeneration and detoxification.


Assuntos
Família Aldeído Desidrogenase 1/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Etanol/toxicidade , Regeneração Hepática , Retinal Desidrogenase/metabolismo , Proteínas de Sinalização YAP/fisiologia , Família Aldeído Desidrogenase 1/genética , Animais , Proliferação de Células , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Retinal Desidrogenase/genética , Transdução de Sinais
2.
Lab Invest ; 97(5): 577-590, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28218739

RESUMO

During progression to type 1 diabetes, insulin-producing ß-cells are lost through an autoimmune attack resulting in unrestrained glucagon expression and secretion, activation of glycogenolysis, and escalating hyperglycemia. We recently identified a protein, designated islet homeostasis protein (IHoP), which specifically co-localizes within glucagon-positive α-cells and is overexpressed in the islets of both post-onset non-obese diabetic (NOD) mice and type 1 diabetes patients. Here we report that in the αTC1.9 mouse α-cell line, IHoP was released in response to high-glucose challenge and was found to regulate secretion of glucagon. We also show that in NOD mice with diabetes, major histocompatibility complex class II was upregulated in islets. In addition hyperglycemia was modulated in NOD mice via suppression of IHoP utilizing small interfering RNA (IHoP-siRNA) constructs/approaches. Suppression of IHoP in the pre-diabetes setting maintained normoglycemia, glyconeolysis, and fostered ß-cell restoration in NOD mice 35 weeks post treatment. Furthermore, we performed adoptive transfer experiments using splenocytes from IHoP-siRNA-treated NOD/ShiLtJ mice, which thwarted the development of hyperglycemia and the extent of insulitis seen in recipient mice. Last, IHoP can be detected in the serum of human type 1 diabetes patients and could potentially serve as an early novel biomarker for type 1 diabetes in patients.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteínas/metabolismo , Animais , Linhagem Celular , Feminino , Glucagon/análise , Glucagon/metabolismo , Antígenos HLA-D/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Hiperglicemia/metabolismo , Ilhotas Pancreáticas/química , Masculino , Camundongos , Camundongos Endogâmicos NOD , Proteínas/análise , Proteínas/antagonistas & inibidores , Transativadores/metabolismo
3.
Am J Pathol ; 186(5): 1092-102, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26945106

RESUMO

miRNAs are involved in liver regeneration, and their expression is dysregulated in hepatocellular carcinoma (HCC). Connective tissue growth factor (CTGF), a direct target of miR-133b, is crucial in the ductular reaction (DR)/oval cell (OC) response for generating new hepatocyte lineages during liver injury in the context of hepatotoxin-inhibited hepatocyte proliferation. Herein, we investigate whether miR-133b regulation of CTGF influences HCC cell proliferation and migration, and DR/OC response. We analyzed miR-133b expression and found it to be down-regulated in HCC patient samples and induced in the rat DR/OC activation model of 2-acetylaminofluorene with partial hepatectomy. Furthermore, overexpression of miR-133b via adenoviral system in vitro led to decreased CTGF expression and reduced proliferation and Transwell migration of both HepG2 HCC cells and WBF-344 rat OCs. In vivo, overexpression of miR-133b in DR/OC activation models of 2-acetylaminofluorene with partial hepatectomy in rats, and 3,5-diethoxycarbonyl-1,4-dihydrocollidine in mice, led to down-regulation of CTGF expression and OC proliferation. Collectively, these results show that miR-133b regulation of CTGF is a novel mechanism critical for the proliferation and migration of HCC cells and OC response.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , MicroRNAs/fisiologia , 2-Acetilaminofluoreno/farmacologia , Adenoviridae/genética , Idoso , Animais , Carcinógenos/farmacologia , Carcinoma Hepatocelular/fisiopatologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Regulação para Baixo/fisiologia , Feminino , Vetores Genéticos , Células HEK293 , Células Hep G2 , Humanos , Neoplasias Hepáticas/fisiopatologia , Masculino , Camundongos , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Ratos , Transfecção
4.
Am J Pathol ; 185(6): 1552-63, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25843683

RESUMO

Hepatic progenitor/oval cell (OC) activation occurs when hepatocyte proliferation is inhibited and is tightly associated with the fibrogenic response during severe liver damage. Connective tissue growth factor (CTGF) is important for OC activation and contributes to the pathogenesis of liver fibrosis. By using the Yeast Two-Hybrid approach, we identified a disintegrin and metalloproteinase with thrombospondin repeat 7 (ADAMTS7) as a CTGF binding protein. In vitro characterization demonstrated CTGF binding and processing by ADAMTS7. Moreover, Adamts7 mRNA was induced during OC activation, after the implantation of 2-acetylaminofluorene with partial hepatectomy in rats or on feeding a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet in mice. X-Gal staining showed Adamts7 expression in hepatocyte nuclear factor 4α(+) hepatocytes and desmin(+) myofibroblasts surrounding reactive ducts in DDC-treated Adamts7(-/-) mice carrying a knocked-in LacZ gene. Adamts7 deficiency was associated with higher transcriptional levels of Ctgf and OC markers and enhanced OC proliferation compared to Adamts7(+/+) controls during DDC-induced liver injury. We also observed increased α-smooth muscle actin and procollagen type I mRNAs, large fibrotic areas in α-smooth muscle actin and Sirius red staining, and increased production of hepatic collagen by hydroxyproline measurement. These results suggest that ADAMTS7 is a new protease for CTGF protein and a novel regulator in the OC compartment, where its absence causes CTGF accumulation, leading to increased OC activation and biliary fibrosis.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Desintegrinas/metabolismo , Cirrose Hepática/metabolismo , Fígado/metabolismo , Nicho de Células-Tronco/fisiologia , Trombospondinas/metabolismo , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAMTS7 , Animais , Fator de Crescimento do Tecido Conjuntivo/genética , Desintegrinas/genética , Fígado/patologia , Cirrose Hepática/patologia , Regeneração Hepática/fisiologia , Camundongos , Camundongos Knockout , Trombospondinas/genética
5.
Am J Pathol ; 185(5): 1396-408, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25773177

RESUMO

Obesity poses an increased risk of developing metabolic syndrome and closely associated nonalcoholic fatty liver disease, including liver cancer. Satiety hormone leptin-deficient (ob/ob) mice, considered paradigmatic of nutritional obesity, develop hepatic steatosis but are less prone to developing liver tumors. Sustained activation of peroxisome proliferator-activated receptor α (PPARα) in ob/ob mouse liver increases fatty acid oxidation (FAO), which contributes to attenuation of obesity but enhances liver cancer risk. To further evaluate the role of PPARα-regulated hepatic FAO and energy burning in the progression of fatty liver disease, we generated PPARα-deficient ob/ob (PPARα(Δ)ob/ob) mice. These mice become strikingly more obese compared to ob/ob littermates, with increased white and brown adipose tissue content and severe hepatic steatosis. Hepatic steatosis becomes more severe in fasted PPARα(Δ)ob/ob mice as they fail to up-regulate FAO systems. PPARα(Δ)ob/ob mice also do not respond to peroxisome proliferative and mitogenic effects of PPARα agonist Wy-14,643. Although PPARα(Δ)ob/ob mice are severely obese, there was no significant increase in liver tumor incidence, even when maintained on a diet containing Wy-14,643. We conclude that sustained PPARα activation-related increase in FAO in fatty livers of obese ob/ob mice increases liver cancer risk, whereas deletion of PPARα in ob/ob mice aggravates obesity and hepatic steatosis. However, it does not lead to liver tumor development because of reduction in FAO and energy burning.


Assuntos
Ácidos Graxos/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , PPAR alfa/deficiência , Animais , Modelos Animais de Doenças , Immunoblotting , Neoplasias Hepáticas/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/complicações , Oxirredução , Reação em Cadeia da Polimerase em Tempo Real
6.
Hepatology ; 61(2): 678-91, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25203810

RESUMO

UNLABELLED: Connective tissue growth factor (CTGF) is a matricellular protein that mediates cell-matrix interaction through various subtypes of integrin receptors. This study investigated the role of CTGF and integrin αvß6 in hepatic progenitor/oval cell activation, which often occurs in the form of ductular reactions (DRs) when hepatocyte proliferation is inhibited during severe liver injury. CTGF and integrin αvß6 proteins were highly expressed in DRs of human cirrhotic livers and cholangiocarcinoma. Confocal microscopy analysis of livers from Ctgf promoter-driven green fluorescent protein reporter mice suggested that oval cells and cholangiocytes were the main sources of CTGF and integrin αvß6 during liver injury induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). Deletion of exon 4 of the Ctgf gene using tamoxifen-inducible Cre-loxP system down-regulated integrin αvß6 in DDC-damaged livers of knockout mice. Ctgf deficiency or inhibition of integrin αvß6, by administrating the neutralizing antibody, 6.3G9 (10 mg/kg body weight), caused low levels of epithelial cell adhesion molecule and cytokeratin 19 gene messenger RNAs. Also, there were smaller oval cell areas, fewer proliferating ductular epithelial cells, and lower cholestasis serum markers within 2 weeks after DDC treatment. Associated fibrosis was attenuated, as indicated by reduced expression of fibrosis-related genes, smaller areas of alpha-smooth muscle actin staining, and low collagen production based on hydroxyproline content and Sirius Red staining. Finally, integrin αvß6 could bind to CTGF mediating oval cell adhesion to CTGF and fibronection substrata and promoting transforming growth factor (TGF)-ß1 activation in vitro. CONCLUSIONS: CTGF and integrin αvß6 regulate oval cell activation and fibrosis, probably through interacting with their common matrix and signal partners, fibronectin and TGF-ß1. CTGF and integrin αvß6 are potential therapeutic targets to control DRs and fibrosis in related liver disease.


Assuntos
Antígenos de Neoplasias/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Integrinas/metabolismo , Cirrose Hepática/metabolismo , Células-Tronco Adultas/metabolismo , Animais , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos , Adesão Celular , Colangiocarcinoma/metabolismo , Feminino , Fibronectinas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Piridinas , Coelhos , Ratos , Fator de Crescimento Transformador beta1/metabolismo
7.
Am J Pathol ; 183(2): 558-65, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23747949

RESUMO

Liver disease affects millions of patients each year. The field of regenerative medicine promises alternative therapeutic approaches, including the potential to bioengineer replacement hepatic tissue. One approach combines cells with acellular scaffolds derived from animal tissue. The goal of this study was to scale up our rodent liver decellularization method to livers of a clinically relevant size. Porcine livers were cannulated via the hepatic artery, then perfused with PBS, followed by successive Triton X-100 and SDS solutions in saline buffer. After several days of rinsing, decellularized liver samples were histologically analyzed. In addition, biopsy specimens of decellularized scaffolds were seeded with hepatoblastoma cells for cytotoxicity testing or implanted s.c. into rodents to investigate scaffold immunogenicity. Histological staining confirmed cellular clearance from pig livers, with removal of nuclei and cytoskeletal components and widespread preservation of structural extracellular molecules. Scanning electron microscopy confirmed preservation of an intact liver capsule, a porous acellular lattice structure with intact vessels and striated basement membrane. Liver scaffolds supported cells over 21 days, and no increased immune response was seen with either allogeneic (rat-into-rat) or xenogeneic (pig-into-rat) transplants over 28 days, compared with sham-operated on controls. These studies demonstrate that successful decellularization of the porcine liver could be achieved with protocols developed for rat livers, yielding nonimmunogenic scaffolds for future hepatic bioengineering studies.


Assuntos
Fígado/citologia , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Fígado/imunologia , Transplante de Fígado/imunologia , Masculino , Ratos , Ratos Endogâmicos F344 , Sus scrofa , Suínos , Transplante Heterólogo
8.
Gut ; 62(5): 774-86, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22267591

RESUMO

This review illustrates promising regenerative medicine technologies that are being developed for the treatment of gastrointestinal diseases. The main strategies under validation to bioengineer or regenerate liver, pancreas, or parts of the digestive tract are twofold: engineering of progenitor cells and seeding of cells on supporting scaffold material. In the first case, stem cells are initially expanded under standard tissue culture conditions. Thereafter, these cells may either be delivered directly to the tissue or organ of interest, or they may be loaded onto a synthetic or natural three-dimensional scaffold that is capable of enhancing cell viability and function. The new construct harbouring the cells usually undergoes a maturation phase within a bioreactor. Within the bioreactor, cells are conditioned to adopt a phenotype similar to that displayed in the native organ. The specific nature of the scaffold within the bioreactor is critical for the development of this high-function phenotype. Efforts to bioengineer or regenerate gastrointestinal tract, liver and pancreas have yielded promising results and have demonstrated the immense potential of regenerative medicine. However, a myriad of technical hurdles must be overcome before transplantable, engineered organs become a reality.


Assuntos
Gastroenteropatias/cirurgia , Medicina Regenerativa , Transplante de Células-Tronco , Engenharia Tecidual/métodos , Bioengenharia/tendências , Gastroenteropatias/patologia , Humanos , Enteropatias/terapia , Falência Hepática/cirurgia , Regeneração Hepática , Transplante de Fígado/métodos , Transplante de Órgãos , Pancreatopatias/cirurgia , Medicina Regenerativa/tendências , Alicerces Teciduais
9.
FASEB J ; 26(8): 3365-79, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22611085

RESUMO

Blood vessels are formed during development and tissue repair through a plethora of modifiers that coordinate efficient vessel assembly in various cellular settings. Here we used the yeast 2-hybrid approach and demonstrated a broad affinity of connective tissue growth factor (CCN2/CTGF) to C-terminal cystine knot motifs present in key angiogenic regulators Slit3, von Willebrand factor, platelet-derived growth factor-B, and VEGF-A. Biochemical characterization and histological analysis showed close association of CCN2/CTGF with these regulators in murine angiogenesis models: normal retinal development, oxygen-induced retinopathy (OIR), and Lewis lung carcinomas. CCN2/CTGF and Slit3 proteins worked in concert to promote in vitro angiogenesis and downstream Cdc42 activation. A fragment corresponding to the first three modules of CCN2/CTGF retained this broad binding ability and gained a dominant-negative function. Intravitreal injection of this mutant caused a significant reduction in vascular obliteration and retinal neovascularization vs. saline injection in the OIR model. Knocking down CCN2/CTGF expression by short-hairpin RNA or ectopic expression of this mutant greatly decreased tumorigenesis and angiogenesis. These results provided mechanistic insight into the angiogenic action of CCN2/CTGF and demonstrated the therapeutic potential of dominant-negative CCN2/CTGF mutants for antiangiogenesis.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/fisiologia , Motivos Nó de Cisteína/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , Animais , Carcinoma Pulmonar de Lewis/induzido quimicamente , Motivos Nó de Cisteína/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas de Membrana/fisiologia , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Vasos Retinianos/crescimento & desenvolvimento , Técnicas do Sistema de Duplo-Híbrido
10.
J Cell Commun Signal ; 17(1): 137-150, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36469291

RESUMO

Liver fibrosis is the common outcome of many chronic liver diseases, resulting from altered cell-cell and cell-matrix interactions that promote hepatic stellate cell (HSC) activation and excessive matrix production. This study aimed to investigate functions of cellular communication network factor 2 (CCN2)/Connective tissue growth factor (CTGF), an extracellular signaling modulator of the CYR61/CTGF/Nov (CCN) family, in liver fibrosis. Tamoxifen-inducible conditional knockouts in mice and hepatocyte-specific deletion of this gene in rats were generated using the Cre-lox system. These animals were subjected to peri-central hepatocyte damage caused by carbon tetrachloride. Potential crosstalk of this molecule with a new profibrotic pathway mediated by the Slit2 ligand and Roundabout (Robo) receptors was also examined. We found that Ccn2/Ctgf was highly upregulated in periportal hepatocytes during carbon tetrachloride-induced hepatocyte damage, liver fibrosis and cirrhosis in mice and rats. Overexpression of this molecule was observed in human hepatocellular carcinoma (HCC) that were surrounded with fibrotic cords. Deletion of the Ccn2/Ctgf gene significantly reduced expression of fibrosis-related genes including Slit2, a smooth muscle actin (SMA) and Collagen type I during carbon tetrachloride-induced liver fibrosis in mice and rats. In addition, Ccn2/Ctgf and its truncated mutant carrying the first three domains were able to interact with the 7th -9th epidermal growth factor (EGF) repeats and the C-terminal cysteine knot (CT) motif of Slit2 protein in cultured HSC and fibrotic murine livers. Ectopic expression of Ccn2/Ctgf protein upregulated Slit2, promoted HSC activation, and potentiated fibrotic responses following chronic intoxication by carbon tetrachloride. Moreover, Ccn2/Ctgf and Slit2 synergistically enhanced activation of phosphatidylinositol 3-kinase (PI3K) and AKT in primary HSC, whereas soluble Robo1-Fc chimera protein could inhibit these activities. These observations demonstrate conserved cross-species functions of Ccn2/Ctgf protein in rodent livers. This protein can be induced in hepatocytes and contribute to liver fibrosis. Its novel connection with the Slit2/Robo signaling may have therapeutic implications against fibrosis in chronic liver disease.

11.
Liver Int ; 32(2): 312-20, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22098068

RESUMO

BACKGROUND: Somatostatin is a pleiotropic peptide, exerting a variety of effects through its receptor subtypes. Recently, somatostatin has been shown to act as a chemoattractant for haematopoietic progenitor cells and hepatic oval cells (HOC) via receptor subtype 2 and subtype 4 (SSTR4) respectively. AIMS: We investigated the in vivo effect of somatostatin/SSTR4 on HOC migration in the injured liver model of rats and the type of signalling molecules associated with the chemotactic function. METHODS: Migration assay, HOC transplantation and phosphatidylinositol-3-kinase (PI3K) signalling were assessed with or without somatostatin and an analogue of somatostatin (TT232) that specifically binds to SSTR4. RESULTS: TT232 was shown to have an antimigratory action on HOC induced by somatostatin in vitro. In HOC transplantation experiments, a lower number of donor-derived cells were detected in TT232-treated animals, as compared with control animals. Activation of PI3K was observed in HOC exposed to somatostatin, and this activation was suppressed by either SSTR4 antibody or TT232-pretreatment. In addition, a PI3K inhibitor abrogated the motility of HOC. CONCLUSION: Together, these data suggest that somatostatin stimulates the migration of HOC within injured liver through SSTR4, and this action appears to be mediated by the PI3K pathway.


Assuntos
Movimento Celular/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Somatostatina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transplante de Células , Células Cultivadas , Quimiotaxia/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Hepatócitos/patologia , Fígado/patologia , Masculino , Peptídeos Cíclicos/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Ratos , Ratos Endogâmicos F344 , Receptores de Somatostatina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Somatostatina/metabolismo
12.
J Hepatol ; 54(5): 930-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21168381

RESUMO

BACKGROUND & AIMS: The adipose tissue represents an accessible, abundant, and replenishable source of adult stem cells for potential applications in regenerative medicine. Adipose tissue-derived mesenchymal stem cells (AT-MSCs) resemble bone marrow-derived mesenchymal stem cells (BM-MSCs) with respect to morphology, immune-phenotype, and multiple differentiation capability. In the present study, we investigated the feasibility of AT-MSC-based liver gene delivery for the treatment of alpha 1-antitrypsin deficiency. METHODS: Mouse AT-MSCs were transduced by rAAV vectors and transplanted into the mouse liver. RESULTS: We showed that AT-MSCs can be transduced by recombinant adeno-associated viral vector serotype 1 (rAAV1-CB-hAAT). After transplanting to the mouse liver, ex vivo transduced AT-MSCs expressed the transgene product, human alpha 1-antitrypsin (hAAT). Importantly, serum levels of hAAT were sustained and no anti-hAAT antibody was detected in any recipients. CONCLUSIONS: These results demonstrated that AT-MSCs can be transduced by rAAV vectors, engrafted into recipient livers, contribute to liver regeneration, and serve as a platform for transgene expression without eliciting an immune response. AT-MSC-based gene therapy presents a novel approach for the treatment of liver diseases, such as AAT deficiency.


Assuntos
Tecido Adiposo/citologia , Terapia Genética/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Deficiência de alfa 1-Antitripsina/terapia , alfa 1-Antitripsina/genética , Animais , Anticorpos/sangue , Dependovirus/genética , Sobrevivência de Enxerto/imunologia , Humanos , Fígado/citologia , Fígado/fisiologia , Regeneração Hepática/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transgenes/genética , Transgenes/imunologia , alfa 1-Antitripsina/sangue , alfa 1-Antitripsina/imunologia , Deficiência de alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/imunologia
13.
Am J Pathol ; 176(6): 2732-42, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20413689

RESUMO

To date the molecular signals regulating activation, proliferation, and differentiation of hepatic oval cells are not fully understood. The Wnt family is essential in hepatic embryogenesis and implicated in hepatic carcinogenesis. This study elucidates novel findings implicating Wnt1 in directing oval cell differentiation during the rat 2-acetylaminofluorene (2AAF) and 2/3 partial hepatectomy (PHx) liver regeneration model. Proteins of Wnt family members were predominantly localized in pericentral hepatocytes during liver injury, oval cell activation, and hepatocyte regeneration. In addition, Wnt message increased coinciding with the rise in oval cell number, whereas protein levels peaked immediately after the height of oval cell proliferation. Immunohistochemical analysis demonstrated nuclear translocation of beta-catenin within oval cells throughout the 2AAF/PHx protocol. Furthermore, RNA interference was used in vivo to confirm the physiological requirement of Wnt1 during the oval cell induction. Ultimately, inhibition of Wnt1 resulted in failure of oval cells to differentiate into hepatocytes and alternatively induced atypical ductular hyperplasia. Taken together, these data indicate that in vivo exposure to Wnt1 shRNA inhibited rat oval cell liver regeneration. In the absence of Wnt1 signaling, oval cells failed to differentiate into hepatocytes and underwent atypical ductular hyperplasia, exhibiting epithelial metaplasia and mucin production. Furthermore, changes in Wnt1 levels are required for the efficient regeneration of the liver by oval cells during massive hepatic injury.


Assuntos
Diferenciação Celular/fisiologia , Regeneração Hepática/fisiologia , Fígado/citologia , Células-Tronco/fisiologia , Proteína Wnt1/metabolismo , 2-Acetilaminofluoreno/farmacologia , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Carcinógenos/farmacologia , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Hepatectomia , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/cirurgia , Masculino , Tamanho do Órgão , Interferência de RNA , Ratos , Ratos Endogâmicos F344 , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neurotransmissores/genética , Receptores de Neurotransmissores/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Proteína Wnt1/genética , alfa-Fetoproteínas/genética , alfa-Fetoproteínas/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
15.
Mol Ther ; 18(8): 1553-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20551917

RESUMO

Adult stem cell-based gene therapy holds several unique advantages including avoidance of germline or other undesirable cell transductions. We have previously shown that liver progenitor (oval) cells can be used as a platform for liver gene delivery of human alpha1-antitrypsin (hAAT). However, this cell source cannot be used in humans for autologous transplantation. In the present study, we tested the feasibility of bone marrow (BM) cell-based liver gene delivery of hAAT. In vitro studies showed that BM cells can be transduced by lentiviral vector (Lenti-CB-hAAT) and recombinant adeno-associated viral vectors (rAAV1-CB-hAAT, and rAAV8-CB-hAAT). Transplantation studies showed that transplanted BM cells homed into liver, differentiated into hepatocytes and expressed hAAT in the liver. Importantly, we showed that transplantation of rAAV8-CB-hAAT vector-transduced BM cells resulted in sustained levels of hAAT in the systemic circulation of recipient mice. These results demonstrated that rAAV vector-mediated BM cell-based liver gene therapy is feasible for the treatment of AAT deficiency and implies a novel therapy for the treatment of liver diseases.


Assuntos
Fígado/metabolismo , alfa 1-Antitripsina/metabolismo , Adenoviridae/genética , Albuminas/genética , Albuminas/metabolismo , Animais , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Feminino , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução Genética/métodos , Cromossomo Y/metabolismo , alfa 1-Antitripsina/sangue , alfa 1-Antitripsina/genética
16.
Lab Invest ; 90(8): 1199-208, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20440274

RESUMO

Earlier studies conducted by our laboratory have shown that suppression of transforming growth factor-beta (TGFbeta)-mediated upregulation of connective tissue growth factor (CTGF) by iloprost resulted in a greatly diminished oval cell response to 2-acetylaminofluorene/partial hepatectomy (2AAF/PH) in rats. We hypothesized that this effect is due to decreased activation of hepatic stellate cells. To test this hypothesis, we maintained rats on a diet supplemented with 2% L-cysteine as a means of inhibiting stellate cell activation during the oval cell response to 2AAF/PH. In vitro experiments show that L-cysteine did, indeed, prevent the activation of stellate cells while exerting no direct effect on oval cells. Desmin immunostaining of liver sections from 2AAF/PH animals indicated that maintenance on the L-cysteine diet resulted in an 11.1-fold decrease in the number of activated stellate cells within the periportal zones. The total number of cells proliferating in the periportal zones of livers from animals treated with L-cysteine was drastically reduced. Further analyses showed a greater than fourfold decrease in the magnitude of the oval cell response in animals maintained on the L-cysteine diet as determined by immunostaining for both OV6 and alpha-fetoprotein (AFP). Global liver expression of AFP as measured by real-time PCR was shown to be decreased 4.7-fold in the L-cysteine-treated animals. These data indicate that the activation of hepatic stellate cells is required for an appropriate oval cell response to 2AAF/PH.


Assuntos
Células Estreladas do Fígado/fisiologia , Regeneração Hepática/fisiologia , Células-Tronco/metabolismo , 2-Acetilaminofluoreno/metabolismo , 2-Acetilaminofluoreno/farmacologia , Animais , Fator de Crescimento do Tecido Conjuntivo , Cisteína/metabolismo , Cisteína/farmacologia , Hepatectomia , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Hepatopatias/metabolismo , Regeneração Hepática/efeitos dos fármacos , Masculino , Ratos , Ratos Endogâmicos F344 , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , alfa-Fetoproteínas/metabolismo , alfa-Fetoproteínas/farmacologia
17.
Lab Invest ; 89(9): 1032-42, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19581879

RESUMO

Glycogen storage disease type Ia (GSDIa) is caused by a genetic defect in the hepatic enzyme glucose-6-phosphatase (G6Pase-alpha), which manifests as life-threatening hypoglycemia with related metabolic complications. A G6Pase-alpha knockout (KO) mouse model was generated to study potential therapies for correcting this disorder. Since then, gene therapy studies have produced promising results, showing long-term improvement in liver histology and glycogen metabolism. Under existing protocols, however, untreated KO pups seldom survived weaning. Here, we present a thorough characterization of the G6Pase-alpha KO mouse, as well as the husbandry protocol for rearing this strain to adulthood. These mice were raised with only palliative care, and characterized from birth through 6 months of age. Once KO mice have survived the very frail weaning period, their size, agility, serum lipids and glycemic control improve dramatically, reaching levels approaching their wild-type littermates. In addition, our data reveal that adult mice lacking G6Pase-alpha are able to mate and produce viable offspring. However, liver histology and glycogen accumulation do not improve with age. Overall, the reliable production of mature KO mice could provide a critical tool for advancing the GSDIa field, as the availability of a robust enzyme-deficient adult offers a new spectrum of treatment avenues that would not be tolerated by the frail pups. Most importantly, our detailed characterization of the adult KO mouse provides a crucial baseline for accurately gauging the efficacy of experimental therapies in this important model.


Assuntos
Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I , Hipoglicemia/patologia , Fígado/patologia , Criação de Animais Domésticos/métodos , Animais , Animais Recém-Nascidos , Animais Lactentes , Análise Química do Sangue , Peso Corporal/fisiologia , Modelos Animais de Doenças , Feminino , Fibrose , GTP Fosfo-Hidrolases/metabolismo , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/metabolismo , Doença de Depósito de Glicogênio Tipo I/patologia , Hipoglicemia/genética , Hipoglicemia/metabolismo , Rim/enzimologia , Rim/patologia , Fígado/enzimologia , Glicogênio Hepático/análise , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/enzimologia , Tamanho do Órgão/efeitos dos fármacos , Reprodução/fisiologia , Desmame
18.
J Hepatol ; 51(1): 77-92, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19446912

RESUMO

BACKGROUND/AIMS: Oval cells (OCs), putative hepatic stem cells, may give rise to liver cancers. We developed a carcinogenesis regimen, based upon induction of OC proliferation prior to carcinogen exposure. In our model, rats subjected to 2-acetylaminofluorene/ partial-hepatectomy followed by aflatoxin injection (APA regimen) developed well-differentiated hepatocholangiocarcinomas. The aim of this study was to establish and characterize cancer cell lines from this animal model. METHODS: Cancer cells were cultured from animals sacrificed eight months after treatment, and single clones were selected. The established cell lines, named LCSCs, were characterized, and their tumorigenicity was assessed in vivo. The roles of granulocyte-colony stimulating factor (G-CSF) and hepatocyte growth factor (HGF) in LCSC growth, survival and motility were also investigated. RESULTS: From primary tumors, six cell lines were developed. LCSCs shared with the primary tumors the expression of various OC-associated markers, including cMet and G-CSF receptor. In vitro, HGF conferred protection from death by serum withdrawal. Stimulation with G-CSF increased LCSC growth and motility, while the blockage of its receptor inhibited LCSC proliferation and migration. CONCLUSIONS: Six cancer cell lines were established from our model of hepatocholangiocarcinoma. HGF modulated LCSC resistance to apoptosis, while G-CSF acted on LCSCs as a proliferative and chemotactic agent.


Assuntos
Carcinoma Hepatocelular/patologia , Colangiocarcinoma/patologia , Fator Estimulador de Colônias de Granulócitos/fisiologia , Fator de Crescimento de Hepatócito/fisiologia , Neoplasias Hepáticas/patologia , 2-Acetilaminofluoreno/toxicidade , Aflatoxina B1/toxicidade , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Hepatectomia , Masculino , Metástase Neoplásica , Proteínas Proto-Oncogênicas c-met/fisiologia , Ratos , Ratos Endogâmicos F344 , Receptores de Fator Estimulador de Colônias de Granulócitos/fisiologia
19.
Hepatology ; 47(3): 996-1004, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18167060

RESUMO

UNLABELLED: Oval cell activation, as part of the regenerative process after liver injury, involves considerable cell-matrix interaction. The matricellular protein, connective tissue growth factor (CTGF), has been shown to be critical for oval cell activation during liver regeneration following N-2-acetylaminofluorene/partial hepatectomy. To understand the mode of action of CTGF during this process, N-terminal CTGF was used as bait to screen a yeast two-hybrid complementary DNA library specific for regenerating livers with massive oval cell presence. Fibronectin (FN), a prominent component of hepatic extracellular matrix (ECM), was found to specifically bind to a new site on CTGF. In addition to module IV, this study showed that module I of CTGF was sufficient for binding to FN in both solid-phase in vitro binding assays and immunoprecipitation. Immunofluorescent staining revealed a dynamic ECM remodeling characterized by an FN-concentrated provisional matrix during oval cell-aided liver regeneration. Abundant CTGF protein was colocalized with FN in the provisional matrix. When expressed as recombinant proteins and immobilized on plastic surfaces, modules I and IV of CTGF were selectively adhesive to thymus cell antigen 1-positive (Thy1(+)) oval cells, stellate cells, and sinusoidal endothelial cells but not to hepatocytes. The adhesion of these two modules on Thy1(+) oval cells required heparan sulfate proteoglycan and integrin alpha(5)beta(1). Recombinant CTGF promoted an integrin alpha(5)beta(1)-dependent migration but not proliferation on Thy1(+) oval cells. CONCLUSION: Modules I and IV enabled the linkage of CTGF to FN and activated hepatic cells. Through these bindings, CTGF on the FN-concentrated provisional matrix promoted cell adhesion and migration, thereby facilitating oval cell activation.


Assuntos
Adesão Celular , Movimento Celular , Fibronectinas/metabolismo , Hepatócitos/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Regeneração Hepática , Animais , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento do Tecido Conjuntivo , Matriz Extracelular/metabolismo , Fibronectinas/análise , Proteoglicanas de Heparan Sulfato/metabolismo , Hepatócitos/efeitos dos fármacos , Proteínas Imediatamente Precoces/análise , Proteínas Imediatamente Precoces/genética , Integrina alfa5beta1/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/análise , Peptídeos e Proteínas de Sinalização Intercelular/genética , Regeneração Hepática/efeitos dos fármacos , Masculino , Ratos , Ratos Endogâmicos F344 , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Antígenos Thy-1/análise , Técnicas do Sistema de Duplo-Híbrido
20.
Oncol Res ; 17(8): 339-45, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19544970

RESUMO

Metaplastic tubular complexes (MTC) have been proposed as precursor lesions for pancreatic adenocarcinoma (PDAC). In this study, we investigated the potential role of bone marrow-derived progenitor cells (BMPC) in the formation of MTC and PDAC in a rat model. F344 rats defective for CD26 (dipeptidyl peptidase IV, DPPIV) expression were sublethally irradiated and received rescue bone marrow cells from wild-type F344 rats that express CD26. After confirming engraftment, recipient animals received dimethylbenzanthracene (DMBA) implantation in their pancreas. Animals were sacrificed monthly from 3 to 7 months. We observed both MTC and tumors in animals that received DMBA. These MTC were ductal complexes because they stained positive for cytokeratin but were negative for chymotrypsin and chromogranin A. Cells that expressed both CD26 and cytokeratin were rarely observed in the MTC. Cells expressing either both CD26 and CD45 or CD26 and smooth muscle actin were also found near the MTC. However, no CD26 signal was detected in the tumors. Within this model, there appeared to be no evidence supporting that BMPC turned into tumor cells directly. BMPC could modulate pancreatic cancer growth through tumor microenvironment.


Assuntos
Adenocarcinoma/patologia , Células da Medula Óssea/patologia , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/patologia , Lesões Pré-Cancerosas/patologia , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Adenocarcinoma/induzido quimicamente , Adenocarcinoma/metabolismo , Animais , Células da Medula Óssea/metabolismo , Carcinógenos/toxicidade , Dipeptidil Peptidase 4/metabolismo , Modelos Animais de Doenças , Imuno-Histoquímica , Antígenos Comuns de Leucócito/metabolismo , Masculino , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/induzido quimicamente , Neoplasias Pancreáticas/metabolismo , Lesões Pré-Cancerosas/induzido quimicamente , Lesões Pré-Cancerosas/metabolismo , Ratos , Ratos Endogâmicos F344
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA