Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 326(1): E50-E60, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019084

RESUMO

The 5' adenosine monophosphate-activated protein kinase (AMPK) is an important skeletal muscle regulator implicated as a possible therapeutic target to ameliorate the local undesired deconditioning of disuse atrophy. However, the muscle-specific role of AMPK in regulating muscle function, fibrosis, and transcriptional reprogramming during physical disuse is unknown. The purpose of this study was to determine how the absence of both catalytic subunits of AMPK in skeletal muscle influences muscle force production, collagen deposition, and the transcriptional landscape. We generated skeletal muscle-specific tamoxifen-inducible AMPKα1/α2 knockout (AMPKα-/-) mice that underwent 14 days of hindlimb unloading (HU) or remained ambulatory for 14 days (AMB). We found that AMPKα-/- during ambulatory conditions altered body weight and myofiber size, decreased muscle function, depleted glycogen stores and TBC1 domain family member 1 (TBC1D1) phosphorylation, increased collagen deposition, and altered transcriptional pathways. Primarily, pathways related to cellular senescence and mitochondrial biogenesis and function were influenced by the absence of AMPKα. The effects of AMPKα-/- persisted, but were not worsened, following hindlimb unloading. Together, we report that AMPKα is necessary to maintain skeletal muscle quality.NEW & NOTEWORTHY We determined that skeletal muscle-specific AMPKα knockout (KO) mice display functional, fibrotic, and transcriptional alterations before and during muscle disuse atrophy. We also observed that AMPKα KO drives muscle fibrosis and pathways related to cellular senescence that continues during the hindlimb unloading period.


Assuntos
Proteínas Quinases Ativadas por AMP , Transtornos Musculares Atróficos , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Colágeno/metabolismo , Fibrose , Glicogênio/metabolismo , Elevação dos Membros Posteriores/fisiologia , Camundongos Knockout , Debilidade Muscular/genética , Debilidade Muscular/metabolismo , Debilidade Muscular/patologia , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Transtornos Musculares Atróficos/genética , Transtornos Musculares Atróficos/metabolismo
2.
J Dairy Sci ; 107(2): 669-682, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37709040

RESUMO

Obesity is often accompanied by heightened circulating and tissue inflammation along with an increase in sphingolipids (e.g., ceramides) in metabolically active and insulin-sensitive organs. Whey protein isolate (WPI) has been shown to decrease inflammation and increase insulin sensitivity when given during a high-fat diet (HFD) intervention in rodents. The whey protein bioactive peptide glycomacropeptide (GMP) has also been linked to having anti-inflammatory properties and regulating lipogenesis. Therefore, the purpose of the study was to determine the effect of dietary GMP within the whey protein matrix on tissue inflammation, adiposity, and tissue ceramide accumulation in an obesogenic rodent model. Young adult male mice (10 wk old) underwent a 10-wk 60% HFD intervention. Glycomacropeptide was absent in the control low-fat diet and HFD WPI (-GMP) groups. The HFD WPI (1×GMP) treatment contained a standard amount of GMP, and HFD WPI (2×GMP) had double the amount. We observed no differences in weight gain or reductions in adiposity when comparing the GMP groups to HFD WPI (-GMP). Similarly, insulin resistance and glucose intolerance were not offset with GMP, and skeletal muscle and liver tissue ceramide content was unaltered with the GMP intervention. In contrast, the additional amount of GMP (2×GMP) might adversely affect tissue obesity-related pathologies. Together, dietary GMP given in a whey protein matrix during an HFD intervention does not alter weight gain, insulin resistance, glucose intolerance, and sphingolipid accumulation in the liver and skeletal muscle.


Assuntos
Caseínas , Intolerância à Glucose , Resistência à Insulina , Fragmentos de Peptídeos , Animais , Masculino , Camundongos , Ceramidas , Dieta Hiperlipídica , Intolerância à Glucose/veterinária , Inflamação/veterinária , Camundongos Endogâmicos C57BL , Obesidade/veterinária , Esfingolipídeos , Aumento de Peso , Proteínas do Soro do Leite
3.
J Nutr ; 153(10): 2915-2928, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37652286

RESUMO

BACKGROUND: Metabolic diseases are often associated with muscle atrophy and heightened inflammation. The whey bioactive compound, glycomacropeptide (GMP), has been shown to exhibit anti-inflammatory properties and therefore may have potential therapeutic efficacy in conditions of skeletal muscle inflammation and atrophy. OBJECTIVES: The purpose of this study was to determine the role of GMP in preventing lipotoxicity-induced myotube atrophy and inflammation. METHODS: C2C12 myoblasts were differentiated to determine the effect of GMP on atrophy and inflammation and to explore its mechanism of action in evaluating various anabolic and catabolic cellular signaling nodes. We also used a lipidomic analysis to evaluate muscle sphingolipid accumulation with the various treatments. Palmitate (0.75 mM) in the presence and absence of GMP (5 µg/mL) was used to induce myotube atrophy and inflammation and cells were collected over a time course of 6-24 h. RESULTS: After 24 h of treatment, GMP prevented the palmitate-induced decrease in the myotube area and myogenic index and the increase in the TLR4-mediated inflammatory genes tumor necrosis factor-α and interleukin 1ß. Moreover, phosphorylation of Erk1/2, and gene expression of myostatin, and the E3 ubiquitin ligases, FBXO32, and MuRF1 were decreased with GMP treatment. GMP did not alter palmitate-induced ceramide or diacylglycerol accumulation, muscle insulin resistance, or protein synthesis. CONCLUSIONS: In summary, GMP prevented palmitate-induced inflammation and atrophy in C2C12 myotubes. The GMP protective mechanism of action in muscle cells during lipotoxic stress may be related to targeting catabolic signaling associated with cellular stress and proteolysis but not protein synthesis.


Assuntos
Palmitatos , Soro do Leite , Humanos , Soro do Leite/metabolismo , Palmitatos/toxicidade , Palmitatos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/prevenção & controle , Fragmentos de Peptídeos , Inflamação/metabolismo
4.
FASEB J ; 35(10): e21867, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34499764

RESUMO

Obesity alters skeletal muscle lipidome and promotes myopathy, but it is unknown whether aberrant muscle lipidome contributes to the reduction in skeletal muscle contractile force-generating capacity. Comprehensive lipidomic analyses of mouse skeletal muscle revealed a very strong positive correlation between the abundance of lysophosphatidylcholine (lyso-PC), a class of lipids that is known to be downregulated with obesity, with maximal tetanic force production. The level of lyso-PC is regulated primarily by lyso-PC acyltransferase 3 (LPCAT3), which acylates lyso-PC to form phosphatidylcholine. Tamoxifen-inducible skeletal muscle-specific overexpression of LPCAT3 (LPCAT3-MKI) was sufficient to reduce muscle lyso-PC content in both standard chow diet- and high-fat diet (HFD)-fed conditions. Strikingly, the assessment of skeletal muscle force-generating capacity ex vivo revealed that muscles from LPCAT3-MKI mice were weaker regardless of diet. Defects in force production were more apparent in HFD-fed condition, where tetanic force production was 40% lower in muscles from LPCAT3-MKI compared to that of control mice. These observations were partly explained by reductions in the cross-sectional area in type IIa and IIx fibers, and signs of muscle edema in the absence of fibrosis. Future studies will pursue the mechanism by which LPCAT3 may alter protein turnover to promote myopathy.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/fisiologia , Dieta Hiperlipídica/efeitos adversos , Lipidômica/métodos , Lisofosfatidilcolinas/toxicidade , Músculo Esquelético/patologia , Doenças Musculares/patologia , Obesidade/fisiopatologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Muscular , Músculo Esquelético/efeitos dos fármacos , Doenças Musculares/etiologia , Doenças Musculares/metabolismo
5.
FASEB J ; 35(9): e21862, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34416035

RESUMO

Loss of muscle mass and strength after disuse followed by impaired muscle recovery commonly occurs with aging. Metformin (MET) and leucine (LEU) individually have shown positive effects in skeletal muscle during atrophy conditions but have not been evaluated in combination nor tested as a remedy to enhance muscle recovery following disuse atrophy in aging. The purpose of this study was to determine if a dual treatment of metformin and leucine (MET + LEU) would prevent disuse-induced atrophy and/or promote muscle recovery in aged mice and if these muscle responses correspond to changes in satellite cells and collagen remodeling. Aged mice (22-24 months) underwent 14 days of hindlimb unloading (HU) followed by 7 or 14 days of reloading (7 or 14 days RL). MET, LEU, or MET + LEU was administered via drinking water and were compared to Vehicle (standard drinking water) and ambulatory baseline. We observed that during HU, MET + LEU resolved whole body grip strength and soleus muscle specific force decrements caused by HU. Gastrocnemius satellite cell abundance was increased with MET + LEU treatment but did not alter muscle size during disuse or recovery conditions. Moreover, MET + LEU treatment alleviated gastrocnemius collagen accumulation caused by HU and increased collagen turnover during 7 and 14 days RL driven by a decrease in collagen IV content. Transcriptional pathway analysis revealed that MET + LEU altered muscle hallmark pathways related to inflammation and myogenesis during HU. Together, the dual treatment of MET and LEU was able to increase muscle function, satellite cell content, and reduce collagen accumulation, thus improving muscle quality during disuse and recovery in aging.


Assuntos
Envelhecimento , Colágeno/metabolismo , Leucina/uso terapêutico , Metformina/uso terapêutico , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/prevenção & controle , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Fibrose/tratamento farmacológico , Elevação dos Membros Posteriores , Imunoglobulina G/análise , Leucina/farmacologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Músculo Esquelético/citologia , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Tamanho do Órgão/efeitos dos fármacos , RNA-Seq , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/patologia , Transdução de Sinais/efeitos dos fármacos
6.
Am J Physiol Cell Physiol ; 320(4): C566-C576, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33406027

RESUMO

Muscle progenitor cells (MPCs) in aged muscle exhibit impaired activation into proliferating myoblasts, thereby impairing fusion and changes in secreted factors. The antihyperglycemic drug metformin, currently studied as a candidate antiaging therapy, may have potential to promote function of aged MPCs. We evaluated the impact of 2 wk of metformin ingestion on primary myoblast function measured in vitro after being extracted from muscle biopsies of older adult participants. MPCs were isolated from muscle biopsies of community-dwelling older (4 male/4 female, ∼69 yr) adult participants before (pre) and after (post) the metformin ingestion period and studied in vitro. Cells were extracted from Young participants (4 male/4 female, ∼27 yr) to serve as a "youthful" comparator. MPCs from Old subjects had lower fusion index and myoblast-endothelial cell homing compared with Young, while Old MPCs, extracted after short-term metformin ingestion, performed better at both tasks. Transcriptomic analyses of Old MPCs (vs. Young) revealed decreased histone expression and increased myogenic pathway activity, yet this phenotype was partially restored by metformin. However, metformin ingestion exacerbated pathways related to inflammation signaling. Together, this study demonstrated that 2 wk of metformin ingestion induced persistent effects on Old MPCs that improved function in vitro and altered their transcriptional signature including histone and chromatin remodeling.


Assuntos
Envelhecimento Saudável , Hipoglicemiantes/administração & dosagem , Metformina/administração & dosagem , Mioblastos Esqueléticos/efeitos dos fármacos , Adulto , Fatores Etários , Idoso , Comunicação Celular , Fusão Celular , Movimento Celular , Células Cultivadas , Técnicas de Cocultura , Esquema de Medicação , Células Endoteliais/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Mioblastos Esqueléticos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transcriptoma/efeitos dos fármacos
7.
Am J Physiol Regul Integr Comp Physiol ; 318(3): R503-R511, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31994900

RESUMO

Toll-like receptor 4 (TLR4) is a proposed mediator of ceramide accumulation, muscle atrophy, and insulin resistance in skeletal muscle. It is currently unknown whether pharmacological inhibition of TLR4, using the TLR4-specific inhibitor TAK-242 during muscle disuse, is able to prevent changes in intracellular ceramide species and consequently preserve muscle size and insulin sensitivity in physically active mice. To address this question, we subjected running wheel-conditioned C57BL/6 male mice (13 wk old; ∼10/group) to 7 days of hindlimb suspension (HS), 7 days of continued wheel running (WR), or daily injections of TAK-242 during HS (HS + TAK242) for 7 days. We measured hindlimb muscle morphology, intramuscular and liver ceramide content, HOMA-IR, mRNA proxies of ceramide turnover and lipid trafficking, and muscle fatty acid and glycerolipid content. As a result, soleus and liver ceramide abundance was greater (P < 0.05) in HS vs. WR but was reduced with TLR4 inhibition (HS + TAK-242 vs. HS). Muscle mass declined (P < 0.01) with HS (vs. WR), but TLR4 inhibition did not prevent this loss (soleus: P = 0.08; HS vs. HS + TAK-242). HOMA-IR was impaired (P < 0.01) in HS versus WR mice, but only fasting blood glucose was reduced with TLR4 inhibition (HS + TAK-242 vs HS, P < 0.05). Robust decreases in muscle Spt2 and Cd36 mRNA and muscle lipidomic trafficking may partially explain reductions in ceramides with TLR4 inhibition. In conclusion, pharmacological TLR4 inhibition in wheel-conditioned mice prevented ceramide accumulation during the early phase of hindlimb suspension (7 days) but had little effect on muscle size and insulin sensitivity.


Assuntos
Atividade Motora/fisiologia , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Receptor 4 Toll-Like/genética , Animais , Ceramidas/metabolismo , Elevação dos Membros Posteriores/fisiologia , Resistência à Insulina , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Receptor 4 Toll-Like/metabolismo
8.
Int J Mol Sci ; 21(4)2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098447

RESUMO

: Intramuscular lipid accumulation has been associated with insulin resistance (IR), aging, diabetes, dyslipidemia, and obesity. A substantial body of evidence has implicated ceramides, a sphingolipid intermediate, as potent antagonists of insulin action that drive insulin resistance. Indeed, genetic mouse studies that lower ceramides are potently insulin sensitizing. Surprisingly less is known about how physical activity (skeletal muscle contraction) regulates ceramides, especially in light that muscle contraction regulates insulin sensitivity. The purpose of this review is to critically evaluate studies (rodent and human) concerning the relationship between skeletal muscle ceramides and IR in response to increased physical activity. Our review of the literature indicates that chronic exercise reduces ceramide levels in individuals with obesity, diabetes, or hyperlipidemia. However, metabolically healthy individuals engaged in increased physical activity can improve insulin sensitivity independent of changes in skeletal muscle ceramide content. Herein we discuss these studies and provide context regarding the technical limitations (e.g., difficulty assessing the myriad ceramide species, the challenge of obtaining information on subcellular compartmentalization, and the paucity of flux measurements) and a lack of mechanistic studies that prevent a more sophisticated assessment of the ceramide pathway during increased contractile activity that lead to divergences in skeletal muscle insulin sensitivity.


Assuntos
Envelhecimento/fisiologia , Ceramidas/metabolismo , Exercício Físico/fisiologia , Resistência à Insulina/fisiologia , Músculo Esquelético/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Humanos , Camundongos , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Obesidade/fisiopatologia
9.
Am J Physiol Endocrinol Metab ; 317(1): E85-E98, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30964703

RESUMO

Impaired recovery of aged muscle following a disuse event is an unresolved issue facing the older adult population. Although investigations in young animals have suggested that rapid regrowth of skeletal muscle following a disuse event entails a coordinated involvement of skeletal muscle macrophages, this phenomenon has not yet been thoroughly tested as an explanation for impaired muscle recovery in aging. To examine this hypothesis, young (4-5 mo) and old (24-26 mo) male mice were examined as controls following 2 wk of hindlimb unloading (HU) and following 4 (RL4) and 7 (RL7) days of reloading after HU. Muscles were harvested to assess muscle weight, myofiber-specifc cross-sectional area, and skeletal muscle macrophages via immunofluorescence. Flow cytometry was used on gastrocnemius and soleus muscle (at RL4) single-cell suspensions to immunophenotype skeletal muscle macrophages. Our data demonstrated impaired muscle regrowth in aged compared with young mice following disuse, which was characterized by divergent muscle macrophage polarization patterns and muscle-specifc macrophage abundance. During reloading, young mice exhibited the classical increase in M1-like (MHC II+CD206-) macrophages that preceeded the increase in percentage of M2-like macrophages (MHC II-CD206+); however, old mice did not demonstrate this pattern. Also, at RL4, the soleus demonstrated reduced macrophage abundance with aging. Together, these data suggest that dysregulated macrophage phenotype patterns in aged muscle during recovery from disuse may be related to impaired muscle growth. Further investigation is needed to determine whether the dysregulated macrophage response in the old during regrowth from disuse is related to a reduced ability to recruit or activate specific immune cells.


Assuntos
Envelhecimento/fisiologia , Polaridade Celular/fisiologia , Elevação dos Membros Posteriores/fisiologia , Macrófagos/fisiologia , Músculo Esquelético/patologia , Atrofia Muscular/reabilitação , Animais , Ativação de Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/citologia , Músculo Esquelético/imunologia , Atrofia Muscular/patologia , Condicionamento Físico Animal/fisiologia
10.
bioRxiv ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38260676

RESUMO

Zinc is an essential micronutrient that regulates a wide range of physiological processes, principally through Zn 2+ binding to protein cysteine residues. Despite being critical for modulation of protein function, for the vast majority of the human proteome the cysteine sites subject to regulation by Zn 2+ binding remain undefined. Here we develop ZnCPT, a comprehensive and quantitative mapping of the zinc-regulated cysteine proteome. We define 4807 zinc-regulated protein cysteines, uncovering protein families across major domains of biology that are subject to either constitutive or inducible modification by zinc. ZnCPT enables systematic discovery of zinc-regulated structural, enzymatic, and allosteric functional domains. On this basis, we identify 52 cancer genetic dependencies subject to zinc regulation, and nominate malignancies sensitive to zinc-induced cytotoxicity. In doing so, we discover a mechanism of zinc regulation over Glutathione Reductase (GSR) that drives cell death in GSR-dependent lung cancers. We provide ZnCPT as a resource for understanding mechanisms of zinc regulation over protein function.

11.
Aging Cell ; 23(6): e14144, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38500398

RESUMO

Aging coincides with the progressive loss of muscle mass and strength, increased adiposity, and diminished physical function. Accordingly, interventions aimed at improving muscle, metabolic, and/or physical health are of interest to mitigate the adverse effects of aging. In this study, we tested a stem cell secretome product, which contains extracellular vesicles and growth, cytoskeletal remodeling, and immunomodulatory factors. We examined the effects of 4 weeks of 2×/week unilateral intramuscular secretome injections (quadriceps) in ambulatory aged male C57BL/6 mice (22-24 months) compared to saline-injected aged-matched controls. Secretome delivery substantially increased whole-body lean mass and decreased fat mass, corresponding to higher myofiber cross-sectional area and smaller adipocyte size, respectively. Secretome-treated mice also had greater whole-body physical function (grip strength and rotarod performance) and had higher energy expenditure and physical activity levels compared to control mice. Furthermore, secretome-treated mice had greater skeletal muscle Pax7+ cell abundance, capillary density, collagen IV turnover, reduced intramuscular lipids, and greater Akt and hormone sensitive lipase phosphorylation in adipose tissue. Finally, secretome treatment in vitro directly enhanced muscle cell growth and IL-6 production, and in adipocytes, it reduced lipid content and improved insulin sensitivity. Moreover, indirect treatment with secretome-treated myotube culture media also enhanced muscle cell growth and adipocyte size reduction. Together, these data suggest that intramuscular treatment with a stem cell secretome improves whole-body metabolism, physical function, and remodels skeletal muscle and adipose tissue in aged mice.


Assuntos
Adiposidade , Envelhecimento , Camundongos Endogâmicos C57BL , Músculo Esquelético , Secretoma , Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Masculino , Adiposidade/efeitos dos fármacos , Camundongos , Secretoma/metabolismo , Células-Tronco/metabolismo
12.
J Appl Physiol (1985) ; 134(4): 923-932, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36861669

RESUMO

Timely and complete recovery of muscle mass and function following a bout of physical disuse are critical components of returning to normal activities of daily living and lifestyle. Proper cross talk between the muscle tissue and myeloid cells (e.g., macrophages) throughout the recovery period from disuse atrophy plays a significant role in the complete resolution of muscle size and function. Chemokine C-C motif ligand 2 (CCL2) has a critical function of recruiting macrophages during the early phase of muscle damage. However, the importance of CCL2 has not been defined in the context of disuse and recovery. Here, we utilized a mouse model of whole body CCL2 deletion (CCL2KO) and subjected them to a period of hindlimb unloading followed by reloading to investigate the importance of CCL2 on the regrowth of muscle following disuse atrophy using ex vivo muscle tests, immunohistochemistry, and fluorescence-activated cell sorting approaches. We show mice that lack CCL2 display an incomplete recovery of gastrocnemius muscle mass, myofiber cross-sectional area, and EDL muscle contractile characteristics during the recovery from disuse atrophy. The soleus and plantaris had limited impact as a result of CCL2 deficiency suggesting a muscle-specific effect. Mice that lack CCL2 have decreased skeletal muscle collagen turnover, which may be related to defects in muscle function and stiffness. In addition, we show that the recruitment of macrophages to gastrocnemius muscle was dramatically reduced in CCL2KO mice during the recovery from disuse atrophy, which likely precipitated poor recovery of muscle size and function and aberrant collagen remodeling.NEW & NOTEWORTHY We provide evidence that the whole body loss of CCL2 in mice has adverse impacts on whole body function and skeletal muscle-specific contractile characteristics and collagen content. These defects in muscle function worsened during the recovery from disuse atrophy and corresponded with decreased recovery of muscle mass. We conclude that the absence of CCL2 decreased recruitment of proinflammatory macrophages to the muscle during the regrowth phase following disuse atrophy resulting in impaired collagen remodeling events and full resolution of muscle morphology and function.


Assuntos
Atrofia Muscular , Transtornos Musculares Atróficos , Camundongos , Animais , Humanos , Atividades Cotidianas , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/fisiologia , Transtornos Musculares Atróficos/patologia , Contração Muscular , Colágeno , Elevação dos Membros Posteriores/fisiologia , Quimiocina CCL2
13.
Aging (Albany NY) ; 15(6): 1808-1832, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36947713

RESUMO

Aging coincides with the accumulation of senescent cells within skeletal muscle that produce inflammatory products, known as the senescence-associated secretory phenotype, but the relationship of senescent cells to muscle atrophy is unclear. Previously, we found that a metformin + leucine (MET+LEU) treatment had synergistic effects in aged mice to improve skeletal muscle structure and function during disuse atrophy. Therefore, the study's purpose was to determine the mechanisms by which MET+LEU exhibits muscle atrophy protection in vitro and if this occurs through cellular senescence. C2C12 myoblasts differentiated into myotubes were used to determine MET+LEU mechanisms during atrophy. Additionally, aged mouse single myofibers and older human donor primary myoblasts were individually isolated to determine the translational potential of MET+LEU on muscle cells. MET+LEU (25 + 125 µM) treatment increased myotube differentiation and prevented myotube atrophy. Low concentration (0.1 + 0.5 µM) MET+LEU had unique effects to prevent muscle atrophy and increase transcripts related to protein synthesis and decrease transcripts related to protein breakdown. Myotube atrophy resulted in dysregulated proteostasis that was reversed with MET+LEU and individually with proteasome inhibition (MG-132). Inflammatory and cellular senescence transcriptional pathways and respective transcripts were increased following myotube atrophy yet reversed with MET+LEU treatment. Dasatinib + quercetin (D+Q) senolytic prevented myotube atrophy similar to MET+LEU. Finally, MET+LEU prevented loss in myotube size in alternate in vitro models of muscle atrophy as well as in aged myofibers while, in human primary myotubes, MET+LEU prevented reductions in myonuclei fusion. These data support that MET+LEU has skeletal muscle cell-autonomous properties to prevent atrophy by reversing senescence and improving proteostasis.


Assuntos
Metformina , Humanos , Animais , Camundongos , Idoso , Metformina/farmacologia , Metformina/uso terapêutico , Leucina/metabolismo , Proteostase , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/metabolismo , Senescência Celular
14.
Skelet Muscle ; 13(1): 6, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36895061

RESUMO

BACKGROUND: Skeletal muscle (SkM) is a large, secretory organ that produces and releases myokines that can have autocrine, paracrine, and endocrine effects. Whether extracellular vesicles (EVs) also play a role in the SkM adaptive response and ability to communicate with other tissues is not well understood. The purpose of this study was to investigate EV biogenesis factors, marker expression, and localization across cell types in the skeletal muscle. We also aimed to investigate whether EV concentrations are altered by disuse atrophy. METHODS: To identify the potential markers of SkM-derived EVs, EVs were isolated from rat serum using density gradient ultracentrifugation, followed by fluorescence correlation spectroscopy measurements or qPCR. Single-cell RNA sequencing (scRNA-seq) data from rat SkM were analyzed to assess the EV biogenesis factor expression, and cellular localization of tetraspanins was investigated by immunohistochemistry. Finally, to assess the effects of mechanical unloading on EV expression in vivo, EV concentrations were measured in the serum by nanoparticle tracking analysis in both a rat and human model of disuse. RESULTS: In this study, we show that the widely used markers of SkM-derived EVs, α-sarcoglycan and miR-1, are undetectable in serum EVs. We also found that EV biogenesis factors, including the tetraspanins CD63, CD9, and CD81, are expressed by a variety of cell types in SkM. SkM sections showed very low detection of CD63, CD9, and CD81 in myofibers and instead accumulation within the interstitial space. Furthermore, although there were no differences in serum EV concentrations following hindlimb suspension in rats, serum EV concentrations were elevated in human subjects after bed rest. CONCLUSIONS: Our findings provide insight into the distribution and localization of EVs in SkM and demonstrate the importance of methodological guidelines in SkM EV research.


Assuntos
Vesículas Extracelulares , Transtornos Musculares Atróficos , Humanos , Ratos , Animais , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Músculo Esquelético/metabolismo , Transtornos Musculares Atróficos/metabolismo , Tetraspaninas/análise , Tetraspaninas/metabolismo
15.
Front Physiol ; 14: 1263500, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942230

RESUMO

Introduction: A hallmark of aging is poor muscle recovery following disuse atrophy. Efficacious strategies to enhance muscle recovery following disuse atrophy in aging are non-existent. Prior exercise training could result in favorable muscle morphological and cellular adaptations that may promote muscle recovery in aging. Here, we characterized the impact of exercise training on skeletal muscle inflammatory and metabolic profiles and cellular remodeling and function, together with femoral artery reactivity prior to and following recovery from disuse atrophy in aged male mice. We hypothesized that 12 weeks of treadmill training in aged male mice would improve skeletal muscle cellular remodeling at baseline and during recovery from disuse atrophy, resulting in improved muscle regrowth. Methods: Physical performance, ex vivo muscle and vascular function, tissue and organ mass, hindlimb muscle cellular remodeling (macrophage, satellite cell, capillary, myofiber size, and fibrosis), and proteolytic, inflammatory, and metabolic muscle transcripts were evaluated in aged exercise-trained and sedentary mice. Results: We found that at baseline following exercise training (vs. sedentary mice), exercise capacity and physical function increased, fat mass decreased, and endothelial function improved. However, exercise training did not alter tibialis anterior or gastrocnemius muscle transcriptional profile, macrophage, satellite cell, capillarity or collagen content, or myofiber size and only tended to increase tibialis mass during recovery from disuse atrophy. Conclusion: While exercise training in old male mice improved endothelial function, physical performance, and whole-body tissue composition as anticipated, 12 weeks of treadmill training had limited impact on skeletal muscle remodeling at baseline or in response to recovery following disuse atrophy.

16.
J Appl Physiol (1985) ; 134(4): 787-798, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36759163

RESUMO

Physical inactivity has many detrimental effects on health, yet the impact of physical inactivity in early life on muscle health in adulthood remains unknown. Early postnatal malnutrition has prolonged effects into adulthood and we propose that early postnatal (P) physical inactivity would have similar negative effects. To test this hypothesis, we exposed postnatal mice (∼P28, C57BL/6J) to 14 days of physical inactivity (shortly after weaning, from ∼P28 to P42 days of age) in the form of muscle disuse with hindlimb unloading (HU). After this early-life physical inactivity, they were allowed to normally ambulate until 5 mo of age (P140, adulthood) when they underwent 14 days of HU with and without 7-day recovery. They were then tested for physical function (grip strength) and muscles were extracted and weighed. Immunofluorescence was carried out on these muscle cross sections for analysis of myofiber cross-sectional area (fCSA), macrophage density (CD68+ cells), and extracellular matrix (ECM) area. Muscle weights and fCSA and myofiber diameter were used to quantify changes in muscle and fiber size. Compared with age-matched controls, no notable effects of early-life physical inactivity (HU) on skeletal muscle and myofiber size were observed. However, a significant reduction in adult grip strength was observed in those exposed to HU early in life. This was associated with reduced muscle macrophages and increased ECM area. Exposure to a short period of early life disuse has negative enduring effects into adulthood impacting grip strength, muscle macrophages, and muscle composition as low muscle quality.NEW & NOTEWORTHY We demonstrate that early life disuse resulted in less grip strength in adulthood. Analysis of muscle composition demonstrated no loss of whole muscle or myofiber size indicating lower muscle quality akin to premature aging. This poor muscle quality was characterized by altered muscle macrophages and extracellular matrix area. We demonstrate intriguing correlations between this loss of grip strength and muscle macrophages and also area of noncontractile tissue in the muscle.


Assuntos
Elevação dos Membros Posteriores , Atrofia Muscular , Camundongos , Animais , Elevação dos Membros Posteriores/fisiologia , Projetos Piloto , Camundongos Endogâmicos C57BL , Músculo Esquelético , Força da Mão
17.
Aging Cell ; 22(11): e13936, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37486024

RESUMO

Muscle inflammation and fibrosis underlie disuse-related complications and may contribute to impaired muscle recovery in aging. Cellular senescence is an emerging link between inflammation, extracellular matrix (ECM) remodeling and poor muscle recovery after disuse. In rodents, metformin has been shown to prevent cellular senescence/senescent associated secretory phenotype (SASP), inflammation, and fibrosis making it a potentially practical therapeutic solution. Thus, the purpose of this study was to determine in older adults if metformin monotherapy during bed rest could reduce muscle fibrosis and cellular senescence/SASP during the re-ambulation period. A two-arm controlled trial was utilized in healthy male and female older adults (n = 20; BMI: <30, age: 60 years+) randomized into either placebo or metformin treatment during a two-week run-in and 5 days of bedrest followed by metformin withdrawal during 7 days of recovery. We found that metformin-treated individuals had less type-I myofiber atrophy during disuse, reduced pro-inflammatory transcriptional profiles, and lower muscle collagen deposition during recovery. Collagen content and myofiber size corresponded to reduced whole muscle cellular senescence and SASP markers. Moreover, metformin treatment reduced primary muscle resident fibro-adipogenic progenitors (FAPs) senescent markers and promoted a shift in fibroblast fate to be less myofibroblast-like. Together, these results suggest that metformin pre-treatment improved ECM remodeling after disuse in older adults by possibly altering cellular senescence and SASP in skeletal muscle and in FAPs.


Assuntos
Metformina , Masculino , Feminino , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Fenótipo Secretor Associado à Senescência , Senescência Celular/genética , Músculo Esquelético , Inflamação , Caminhada , Colágeno , Fibrose
18.
Elife ; 122023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36951533

RESUMO

Reactive oxygen species (ROS) accumulation is a cardinal feature of skeletal muscle atrophy. ROS refers to a collection of radical molecules whose cellular signals are vast, and it is unclear which downstream consequences of ROS are responsible for the loss of muscle mass and strength. Here, we show that lipid hydroperoxides (LOOH) are increased with age and disuse, and the accumulation of LOOH by deletion of glutathione peroxidase 4 (GPx4) is sufficient to augment muscle atrophy. LOOH promoted atrophy in a lysosomal-dependent, proteasomal-independent manner. In young and old mice, genetic and pharmacological neutralization of LOOH or their secondary reactive lipid aldehydes robustly prevented muscle atrophy and weakness, indicating that LOOH-derived carbonyl stress mediates age- and disuse-induced muscle dysfunction. Our findings provide novel insights for the role of LOOH in sarcopenia including a therapeutic implication by pharmacological suppression.


Assuntos
Sarcopenia , Camundongos , Animais , Sarcopenia/patologia , Peróxidos Lipídicos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Músculo Esquelético/metabolismo , Estresse Oxidativo
19.
J Appl Physiol (1985) ; 133(4): 919-931, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36049060

RESUMO

Poor recovery of muscle size and strength with aging coincides with a dysregulated macrophage response during the early stages of regrowth. Immunomodulation in the form of ex vivo cytokine (macrophage-colony stimulating factor) or polarized macrophage delivery has been demonstrated to improve skeletal muscle regeneration. However, it is unclear if these macrophage-promoting approaches would be effective to improve skeletal muscle recovery following disuse in aged animals. Here, we isolated bone marrow-derived macrophages from donor mice of different ages under various experimental conditions and polarized them into proinflammatory macrophages. Macrophages were delivered intramuscularly into young adult or aged recipient mice during the early recovery period following a period of hindlimb unloading (HU). Delivery of proinflammatory macrophages from donor young adults or aged mice was sufficient to increase muscle function of aged mice during the recovery period. Moreover, proinflammatory macrophages derived from aged donor mice collected during recovery were similarly able to increase muscle function of aged mice following disuse. In addition to the delivery of macrophages, we showed that the intramuscular injection of the cytokine, macrophage-colony stimulating factor, to the muscle of aged mice following HU was able to increase muscle macrophage content and muscle force production during recovery. Together, these results suggest that macrophage immunomodulation approaches in the form of ex vivo proinflammatory macrophage or macrophage-colony stimulating factor delivery during the early recovery phase following disuse atrophy were sufficient to restore the loss of aged skeletal muscle function.NEW & NOTEWORTHY A single intramuscular administration of polarized macrophages into muscles of aged mice following a bout of disuse atrophy was sufficient to improve functional recover similarly to young adults after disuse atrophy regardless of the age or experimental condition of the donor mice. Additionally, intramuscular delivery of macrophage-colony stimulating factor into aged mice was similarly effective. Targeting macrophage function early during the regrowth phase may be a novel tool to bolster muscle recovery in aging.


Assuntos
Atrofia Muscular , Transtornos Musculares Atróficos , Animais , Citocinas , Elevação dos Membros Posteriores/fisiologia , Imunomodulação , Macrófagos/patologia , Camundongos , Músculo Esquelético/fisiologia , Transtornos Musculares Atróficos/patologia
20.
Exp Gerontol ; 163: 111804, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35405248

RESUMO

BACKGROUND AND AIMS: Metformin is the most commonly prescribed medication to treat diabetes. Emerging evidence suggests that metformin could have off target effects that might help promote healthy muscle aging, but these effects have not been thoroughly studied in glucose tolerant older individuals. The purpose of this study was to investigate the short-term effects of metformin consumption on skeletal muscle mitochondrial bioenergetics in healthy older adults. METHODS: We obtained muscle biopsy samples from 16 healthy older adults previously naïve to metformin and treated with metformin (METF; 3F, 5M), or placebo (CON; 3F, 5M), for two weeks using a randomized and blinded study design. Samples were analyzed using high-resolution respirometry, immunofluorescence, and immunoblotting to assess muscle mitochondrial bioenergetics, satellite cell (SC) content, and associated protein markers. RESULTS: We found that metformin treatment did not alter maximal mitochondrial respiration rates in muscle compared to CON. In contrast, mitochondrial H2O2 emission and production were elevated in muscle samples from METF versus CON (METF emission: 2.59 ± 0.72 SE Fold, P = 0.04; METF production: 2.29 ± 0.53 SE Fold, P = 0.02). Furthermore, the change in H2O2 emission was positively correlated with the change in type 1 myofiber SC content and this was biased in METF participants (Pooled: R2 = 0.5816, P = 0.0006; METF: R2 = 0.674, P = 0.0125). CONCLUSIONS: These findings suggest that acute exposure to metformin does not impact mitochondrial respiration in aged, glucose-tolerant muscle, but rather, influences mitochondrial-free radical and SC dynamics. CLINICAL TRIAL REGISTRATION: NCT03107884, clinicaltrials.gov.


Assuntos
Metformina , Idoso , Glucose/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Mitocôndrias/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA