Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894731

RESUMO

Tau protein has been described for several decades as a promoter of tubulin assembly into microtubules. Dysregulation or alterations in Tau expression have been related to various brain cancers, including the highly aggressive and lethal brain tumor glioblastoma multiform (GBM). In this respect, Tau holds significant promise as a target for the development of novel therapies. Here, we examined the structure-activity relationship of a new series of seventeen 2-aminothiazole-fused to flavonoid hybrid compounds (TZF) on Tau binding, Tau fibrillation, and cellular effects on Tau-expressing cancer cells. By spectrofluorometric approach, we found that two compounds, 2 and 9, demonstrated high affinity for Tau and exhibited a strong propensity to inhibit Tau fibrillation. Then, the biological activity of these compounds was evaluated on several Tau-expressing cells derived from glioblastoma. The two lead compounds displayed a high anti-metabolic activity on cells related to an increased fission of the mitochondria network. Moreover, we showed that both compounds induced microtubule bundling within newly formed neurite-like protrusions, as well as with defection of cell migration. Taken together, our results provide a strong experimental basis to develop new potent molecules targeting Tau-expressing cancer cells, such as GBM.


Assuntos
Glioblastoma , Proteínas tau , Humanos , Proteínas tau/metabolismo , Glioblastoma/metabolismo , Microtúbulos/metabolismo , Tiazóis/farmacologia , Tubulina (Proteína)/metabolismo , Ligação Proteica
2.
J Cell Sci ; 132(3)2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30659115

RESUMO

The pathological significance of Tau (encoded by MAPT) in mechanisms driving cell migration in glioblastoma is unclear. By using an shRNA approach to deplete microtubule-stabilizing Tau in U87 cells, we determined its impact on cytoskeletal coordination during migration. We demonstrated here that the motility of these Tau-knockdown cells (shTau cells) was significantly (36%) lower than that of control cells. The shTau cells displayed a slightly changed motility in the presence of nocodazole, which inhibits microtubule formation. Such reduced motility of shTau cells was characterized by a 28% lower number of microtubule bundles at the non-adhesive edges of the tails. In accordance with Tau-stabilized microtubules being required for cell movement, measurements of the front, body and rear section displacements of cells showed inefficient tail retraction in shTau cells. The tail retraction was restored by treatment with Y27632, an inhibitor of Rho-ROCK signaling. Moreover, we clearly identified that shTau cells displayed relocation of the active phosphorylated form of p190-RhoGAP (also known as ARHGAP35), which inhibits Rho-ROCK signaling, and focal adhesion kinase (FAK, also known as PTK2) in cell bodies. In conclusion, our findings indicate that Tau governs the remodeling of microtubule and actin networks for the retraction of the tail of cells, which is necessary for effective migration.


Assuntos
Citoesqueleto de Actina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Microtúbulos/metabolismo , Neuroglia/metabolismo , Proteínas Repressoras/genética , Quinases Associadas a rho/genética , Proteínas tau/genética , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/ultraestrutura , Actinas/genética , Actinas/metabolismo , Amidas/farmacologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Microtúbulos/efeitos dos fármacos , Microtúbulos/ultraestrutura , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , Nocodazol/farmacologia , Piridinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Transdução de Sinais , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo , Proteínas tau/antagonistas & inibidores , Proteínas tau/metabolismo
3.
FASEB J ; 30(9): 3202-15, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27284003

RESUMO

Stathmin is a prominent destabilizer of microtubules (MTs). Extensive in vitro studies have strongly suggested that stathmin could act by sequestering tubulin and/or by binding to MT tips. In cells, the molecular mechanisms of stathmin binding to tubulin and/or MTs and its implications for the MT dynamics remain unexplored. By using immunofluorescence resonance energy transfer and fluorescence recovery after photobleaching, we analyzed the ability of stathmin and its phosphorylated forms (on Ser16, -25, -38, and -63) to interact with tubulin and MTs in A549 cells. Consistent with in vitro studies, we detected stathmin-tubulin interactions at the MT plus ends and in the cytosol. Of interest, we also observed a novel pool of stathmin bound along the MT. Expression of truncated stathmin and use of MT-stabilizing taxol further showed that the C-terminal domain of stathmin is the main contributor to this binding and that the phosphorylation state of stathmin plays a role in its binding along the MT wall. Our findings demonstrate that stathmin binds directly along the MT wall. This pool of stathmin would be readily available to participate in protofilament dissociation when the moving plus end of a depolymerizing MT reaches stathmin molecules.-Nouar, R., Breuzard, G., Bastonero, S., Gorokhova, S., Barbier, P., Devred, F., Kovacic, H., Peyrot, V. Direct evidence for the interaction of stathmin along the length and the plus end of microtubules in cells.


Assuntos
Microtúbulos/fisiologia , Estatmina/fisiologia , Anticorpos , Linhagem Celular Tumoral , DNA Complementar/genética , DNA Complementar/metabolismo , Regulação da Expressão Gênica/fisiologia , Humanos , Immunoblotting , Paclitaxel/farmacologia , Fosforilação , Moduladores de Tubulina/farmacologia
4.
Bioorg Med Chem ; 25(5): 1652-1665, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28174064

RESUMO

The synthesis of twenty-six 4-arylcoumarin analogues of combretastatin A-4 (CA-4) led to the identification of two new compounds (25 and 26) with strong cytotoxic activity. Both compounds had a high cytotoxic effect on a CA-4-resistant colon adenocarcinoma cell line (HT29D4). The compounds affected cell cycle progression characterized by a mitotic block. The activity of these compounds against microtubules both in vitro and in cells was examined and both compounds were found to potently inhibit in vitro microtubule formation via a sub-stoichiometric mode like CA-4. By immunofluorescence, it was observed that both compounds induced strong microtubule network disruption. Our results provide a strong experimental basis to develop new potent anti-tubulin molecules targeting CA-4-resistant cancer cells.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Cumarínicos/síntese química , Cumarínicos/farmacologia , Tubulina (Proteína)/efeitos dos fármacos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Cumarínicos/química , Citometria de Fluxo , Humanos , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray
5.
Can J Microbiol ; 62(2): 123-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26639248

RESUMO

Biofilms of live bacteria forming on medical devices and implants contribute significantly to bacterial blood dissemination and to the spread of nosocomial infections. Cell surface SdrD protein plays a key role in the attachment of Staphylococcus aureus to the extracellular matrix (ECM) and in the formation of biofilm. SdrD binds calcium ions using its B1-B5 region bearing EF-hand Ca-binding sites, leading to conformational changes in the structure of SdrD. This alters the distance between the bacterial surface and the ECM-interacting domain of SdrD in a spring-like fashion, participating in bacterial attachment. In this study we investigated calcium binding to EF-hand sites of SdrD using isothermal titration calorimetry and determined the impact of this process on SdrD's thermodynamic stability. This allowed us to propose a model of B1-B5 reorganization upon binding of calcium and to get new insight into the molecular mechanism of SdrD's action.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Bactérias/química , Proteínas de Ligação ao Cálcio/química , Domínios Proteicos , Termodinâmica
6.
J Cell Sci ; 126(Pt 13): 2810-9, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23659998

RESUMO

Despite extensive studies, the molecular mechanisms of Tau binding to microtubules (MTs) and its consequences on MT stability still remain unclear. It is especially true in cells where the spatiotemporal distribution of Tau-MT interactions is unknown. Using Förster resonance energy transfer (FRET), we showed that the Tau-MT interaction was distributed along MTs in periodic hotspots of high and low FRET intensities. Fluorescence recovery after photobleaching (FRAP) revealed a two-phase exchange of Tau with MTs as a rapid diffusion followed by a slower binding phase. A real-time FRET assay showed that high FRET occurred simultaneously with rescue and pause transitions at MT ends. To further explore the functional interaction of Tau with MTs, the binding of paclitaxel (PTX), tubulin acetylation induced by trichostatin A (TSA), and the expression of non-acetylatable tubulin were used. With PTX and TSA, FRAP curves best fitted a single phase with a long time constant, whereas with non-acetylatable α-tubulin, curves best fitted a two phase recovery. Upon incubation with PTX and TSA, the number of high and low FRET hotspots decreased by up to 50% and no hotspot was observed during rescue and pause transitions. In the presence of non-acetylatable α-tubulin, a 34% increase in low FRET hotspots occurred, and our real-time FRET assay revealed that low FRET hotspots appeared with MTs recovering growth. In conclusion, we have identified, by FRET and FRAP, a discrete Tau-MT interaction, in which Tau could induce conformational changes of MTs, favoring recovery of MT self-assembly.


Assuntos
Microtúbulos/química , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Tubulina (Proteína)/química , Proteínas tau/química , Acetilação , Sítios de Ligação , Linhagem Celular Tumoral , Recuperação de Fluorescência Após Fotodegradação , Transferência Ressonante de Energia de Fluorescência , Humanos , Ácidos Hidroxâmicos/farmacologia , Microtúbulos/metabolismo , Imagem Molecular , Paclitaxel/farmacologia , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Proteínas tau/metabolismo
7.
Anal Chem ; 87(14): 7043-51, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26076190

RESUMO

The 90-kDa heat shock protein (Hsp90) is a highly flexible dimer able to self-associate in the presence of divalent cations or under heat shock. This study investigated the relationship between Hsp90 oligomers and the Hsp90 cochaperone Aha1 (activator of Hsp90 ATPase). The interactions of Aha1 with Hsp90 dimers and oligomers were evaluated by ultracentrifugation, size-exclusion chromatography coupled to multiangle laser light scattering and high-mass matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Hsp90 dimer was able to bind up to four Aha1 molecules, and Hsp90 oligomers are also able to interact with Aha1. The binding of Aha1 did not interfere with the Hsp90 oligomerization process. Except for Hsp90 dimer, the stoichiometry of the interaction remained constant, at 2 Aha1 molecules per Hsp90 dimer, regardless of the degree of Hsp90 oligomerization. Moreover, Aha1 predominantly bound to Hsp90 oligomers. Thus, the ability of Hsp90 oligomers to bind the Aha1 ATPase activator reinforces their role within the Hsp90 chaperone machineries.


Assuntos
Proteínas de Choque Térmico HSP90/química , Chaperonas Moleculares/química , Animais , Cromatografia em Gel , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Luz , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Ligação Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espalhamento de Radiação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Suínos , Ultracentrifugação
8.
Biol Cell ; 105(4): 149-61, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23312015

RESUMO

Microtubules (MTs) are involved in many crucial processes such as cell morphogenesis, mitosis and motility. These dynamic structures resulting from the complex assembly of tubulin are tightly regulated by stabilising MT-associated proteins (MAPs) such as tau and destabilising proteins, notably stathmin. Because of their key role, these MAPs and their interactions have been extensively studied using biochemical and biophysical approaches, particularly in vitro. Nevertheless, numerous questions remain unanswered and the mechanisms of interaction between MT and these proteins are still unclear in cells. Techniques coupling cell imaging and fluorescence methods, such as Förster resonance energy transfer and fluorescence recovery after photobleaching, are excellent tools to study these interactions in situ. After describing these methods, we will present emblematic data from the literature and unpublished experimental results from our laboratory concerning the interactions between MTs, tau and stathmin in cells.


Assuntos
Recuperação de Fluorescência Após Fotodegradação/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Microtúbulos/metabolismo , Estatmina/metabolismo , Proteínas tau/metabolismo , Animais , Humanos , Microtúbulos/química , Ligação Proteica , Estatmina/química , Proteínas tau/química
9.
Int J Mol Sci ; 15(8): 14697-714, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25196605

RESUMO

The interaction between the microtubule associated protein, tau and the microtubules is investigated. A fluorescence resonance energy transfer (FRET) assay was used to determine the distance separating tau to the microtubule wall, as well as the binding parameters of the interaction. By using microtubules stabilized with Flutax-2 as donor and tau labeled with rhodamine as acceptor, a donor-to-acceptor distance of 54 ± 1 Å was found. A molecular model is proposed in which Flutax-2 is directly accessible to tau-rhodamine molecules for energy transfer. By titration, we calculated the stoichiometric dissociation constant to be equal to 1.0 ± 0.5 µM. The influence of the C-terminal tails of αß-tubulin on the tau-microtubule interaction is presented once a procedure to form homogeneous solution of cleaved tubulin has been determined. The results indicate that the C-terminal tails of α- and ß-tubulin by electrostatic effects and of recruitment seem to be involved in the binding mechanism of tau.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Microtúbulos/metabolismo , Proteínas tau/metabolismo , Microtúbulos/química , Ligação Proteica , Estrutura Terciária de Proteína , Taxoides/química , Taxoides/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Proteínas tau/química
10.
Bioorg Med Chem ; 20(14): 4271-8, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22739088

RESUMO

A series of novel antimitotic hybrids were synthesized in good yields by linking of azide-containing colchicine congeners with acetylene-substituted tubulizine-type derivatives using copper-mediated 1,3-dipolar cycloaddition. Obtained compounds exhibit good cytotoxicity against HBL100 epithelial cell lines (IC(50)=0.599-2.93 µÐœ). Several newly synthesized compounds are the substoichiometric inhibitors of microtubule assembly (R=0.41-0.78). The results highlight the importance of the length of spacer linking the tubulin binding ligands in heterodimeric molecules.


Assuntos
Antineoplásicos/síntese química , Colchicina/análogos & derivados , Microtúbulos/química , Moduladores de Tubulina/síntese química , Antineoplásicos/química , Antineoplásicos/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Química Click , Colchicina/síntese química , Colchicina/química , Colchicina/toxicidade , Dimerização , Humanos , Ligantes , Microtúbulos/metabolismo , Ligação Proteica , Moduladores de Tubulina/química , Moduladores de Tubulina/toxicidade
11.
Cancers (Basel) ; 14(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36358803

RESUMO

Despite being extensively studied for several decades, the microtubule-associated protein Tau has not finished revealing its secrets. For long, Tau has been known for its ability to promote microtubule assembly. A less known feature of Tau is its capability to bind to cancer-related protein kinases, suggesting a possible role of Tau in modulating microtubule-independent cellular pathways that are associated with oncogenesis. With the intention of finding new therapeutic targets for cancer, it appears essential to examine the interaction of Tau with these kinases and their consequences. This review aims at collecting the literature data supporting the relationship between Tau and cancer with a particular focus on glioblastoma tumors in which the pathological significance of Tau remains largely unexplored. We will first treat this subject from a mechanistic point of view showing the pivotal role of Tau in oncogenic processes. Then, we will discuss the involvement of Tau in dysregulating critical pathways in glioblastoma. Finally, we will outline promising strategies to target Tau protein for the therapy of glioblastoma.

12.
J Biol Chem ; 285(41): 31672-81, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20675373

RESUMO

Tubulin is able to switch between a straight microtubule-like structure and a curved structure in complex with the stathmin-like domain of the RB3 protein (T(2)RB3). GTP hydrolysis following microtubule assembly induces protofilament curvature and disassembly. The conformation of the labile tubulin heterodimers is unknown. One important question is whether free GDP-tubulin dimers are straightened by GTP binding or if GTP-tubulin is also curved and switches into a straight conformation upon assembly. We have obtained insight into the bending flexibility of tubulin by analyzing the interplay of tubulin-stathmin association with the binding of several small molecule inhibitors to the colchicine domain at the tubulin intradimer interface, combining structural and biochemical approaches. The crystal structures of T(2)RB3 complexes with the chiral R and S isomers of ethyl-5-amino-2-methyl-1,2-dihydro-3-phenylpyrido[3,4-b]pyrazin-7-yl-carbamate, show that their binding site overlaps with colchicine ring A and that both complexes have the same curvature as unliganded T(2)RB3. The binding of these ligands is incompatible with a straight tubulin structure in microtubules. Analytical ultracentrifugation and binding measurements show that tubulin-stathmin associations (T(2)RB3, T(2)Stath) and binding of ligands (R, S, TN-16, or the colchicine analogue MTC) are thermodynamically independent from one another, irrespective of tubulin being bound to GTP or GDP. The fact that the interfacial ligands bind equally well to tubulin dimers or stathmin complexes supports a bent conformation of the free tubulin dimers. It is tempting to speculate that stathmin evolved to recognize curved structures in unassembled and disassembling tubulin, thus regulating microtubule assembly.


Assuntos
Microtúbulos , Multimerização Proteica , Estatmina/química , Tubulina (Proteína)/química , Animais , Cristalografia por Raios X , Humanos , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Ovinos , Estatmina/agonistas , Estatmina/metabolismo , Tubulina (Proteína)/agonistas , Tubulina (Proteína)/metabolismo
13.
J Biol Chem ; 285(20): 15100-15110, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20228408

RESUMO

The 90-kDa heat shock protein (Hsp90) is involved in the regulation and activation of numerous client proteins essential for diverse functions such as cell growth and differentiation. Although the function of cytosolic Hsp90 is dependent on a battery of cochaperone proteins regulating both its ATPase activity and its interaction with client proteins, little is known about the real Hsp90 molecular mechanism. Besides its highly flexible dimeric state, Hsp90 is able to self-oligomerize in the presence of divalent cations or under heat shock. In addition to dimers, oligomers exhibit a chaperone activity. In this work, we focused on Mg(2+)-induced oligomers that we named Type I, Type II, and Type III in increasing molecular mass order. After stabilization of these quaternary structures, we optimized a purification protocol. Combining analytical ultracentrifugation, size exclusion chromatography coupled to multiangle laser light scattering, and high mass matrix-assisted laser desorption/ionization time of flight mass spectrometry, we determined biochemical and biophysical characteristics of each Hsp90 oligomer. We demonstrate that Type I oligomer is a tetramer, and Type II is an hexamer, whereas Type III is a dodecamer. These even-numbered structures demonstrate that the building brick for oligomerization is the dimer up to the Type II, whereas Type III probably results from the association of two Type II. Moreover, the Type II oligomer structure, studied by negative stain transmission electron microscopy tomography, exhibits a "nest-like" shape that forms a "cozy chaperoning chamber" where the client protein folding/protection could occur.


Assuntos
Biopolímeros/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Magnésio/metabolismo , Animais , Biopolímeros/química , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Proteínas de Choque Térmico HSP90/química , Microscopia Eletrônica de Transmissão , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Suínos , Ultracentrifugação
14.
J Antimicrob Chemother ; 65(8): 1688-93, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20551217

RESUMO

OBJECTIVES: Antimicrobial resistance is an increasingly life-threatening problem that emphasizes the need to develop new antibacterial agents. The in vitro antibacterial activity of squalamine, a natural aminosterol, has been previously demonstrated against multidrug-resistant bacteria and moulds. Although the antibacterial activity of squalamine was found to correlate with that of other drugs, such as colistin, against Gram-negative bacteria, the former was active against Gram-positive bacteria, which are resistant to colistin. In this work, we provide new insights into squalamine's antibacterial mechanism of action compared with other known antibiotics. METHODS: We evaluated squalamine's antibacterial mechanism of action using the broth microdilution method for MIC determination and time-kill assays, transmission electron microscopy for morphological change studies, bioluminescence for ATP release measurements and fluorescence methods for membrane depolarization assays. RESULTS: Concerning Gram-negative bacteria, squalamine, similar to colistin, required interaction with the negatively charged phosphate groups in the bacterial outer membrane as the first step in a sequence of different events ultimately leading to the disruption of the membrane. Conversely, squalamine exhibited a depolarizing effect on Gram-positive bacteria, which resulted in rapid cell death. CONCLUSIONS: The new insights into the mechanism of action of squalamine highlight the importance of aminosterols in the design of a new class of antibacterial compounds that could be used as disinfectants and detergents.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Colestanóis/farmacologia , Bactérias Gram-Negativas/citologia , Bactérias Gram-Positivas/citologia , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia , Microscopia Eletrônica de Transmissão , Fatores de Tempo
15.
FASEB J ; 23(4): 1146-52, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19074508

RESUMO

In Alzheimer disease (AD)-affected neurons, the Tau protein is found in an aggregated and hyperphosphorylated state. A common hypothesis is that Tau hyperphosphorylation causes its dissociation from the microtubular surface, with consequently a breakdown of the microtubules (MTs) and aggregation of the unbound Tau. We evaluated the effect of Tau phosphorylation on both tubulin assembly and MT binding. We show that the cyclin-dependent kinase 2/cyclin A3 kinase complex can generate the AT8 and AT180 AD-specific phospho-epitopes and use NMR spectroscopy to validate qualitatively and quantitatively the phospho content of our samples. The simultaneous presence of both epitopes disables the tubulin assembly capacity of Tau in conditions whereby Tau is the driving force for the assembly process but does not, however, inhibit MT assembly when the latter is driven by an increased tubulin concentration. When compared to the isolated MT binding repeats (K(d)=0.3 microM), the phospho-Tau retains a substantial affinity for preformed MTs (K(d)=11 nM), suggesting that the phosphorylated proline-rich region still participates in the binding event. Our results hence indicate that the sole phosphorylation at the AT8/AT180 epitopes, although leading to a functional defect for Tau, is not sufficient for its dissociation from the MT surface and subsequent aggregation as observed in AD.


Assuntos
Doença de Alzheimer/metabolismo , Epitopos , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas tau/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Humanos , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Ligação Proteica/genética , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , Tubulina (Proteína)/genética , Tubulina (Proteína)/farmacologia , Proteínas tau/genética
16.
Magn Reson Chem ; 48(9): 738-44, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20589726

RESUMO

The complete (1)H and (13)C NMR assignment of 9 acetamidochalcones, 18 acetamidoflavones, 18 aminoflavones, 9 acetamidoflavonols and 9 aminoflavonols has been performed using one- and two-dimensional NMR techniques including COSY, HMQC and HMBC experiments.


Assuntos
Acetamidas/química , Acetamidas/síntese química , Flavonoides/química , Flavonoides/síntese química , Isótopos de Carbono , Espectroscopia de Ressonância Magnética/normas , Estrutura Molecular , Prótons , Padrões de Referência , Estereoisomerismo
17.
BMC Cancer ; 9: 242, 2009 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-19619277

RESUMO

BACKGROUND: Over the past decades, in spite of intensive search, no significant increase in the survival of patients with glioblastoma has been obtained. The role of the blood-brain barrier (BBB) and especially the activity of efflux pumps belonging to the ATP Binding Cassette (ABC) family may, in part, explain this defect. METHODS: The in-vitro activities of JAI-51 on cell proliferation were assessed by various experimental approaches in four human and a murine glioblastoma cell lines. Using drug exclusion assays and flow-cytometry, potential inhibitory effects of JAI-51 on P-gp and BCRP were evaluated in sensitive or resistant cell lines. JAI-51 activity on in-vitro microtubule polymerization was assessed by tubulin polymerization assay and direct binding measurements by analytical ultracentrifugation. Finally, a model of C57BL/6 mice bearing subcutaneous GL26 glioblastoma xenografts was used to assess the activity of the title compound in vivo. An HPLC method was designed to detect JAI-51 in the brain and other target organs of the treated animals, as well as in the tumours. RESULTS: In the four human and the murine glioblastoma cell lines tested, 10 muM JAI-51 inhibited proliferation and blocked cells in the M phase of the cell cycle, via its activity as a microtubule depolymerising agent. This ligand binds to tubulin with an association constant of 2 x 105 M-1, overlapping the colchicine binding site. JAI-51 also inhibited the activity of P-gp and BCRP, without being a substrate of these efflux pumps. These in vitro studies were reinforced by our in vivo investigations of C57BL/6 mice bearing GL26 glioblastoma xenografts, in which JAI-51 induced a delay in tumour onset and a tumour growth inhibition, following intraperitoneal administration of 96 mg/kg once a week. In accordance with these results, JAI-51 was detected by HPLC in the tumours of the treated animals. Moreover, JAI-51 was detected in the brain, showing that the molecule is also able to cross the BBB. CONCLUSION: These in vitro and in vivo data suggest that JAI-51 could be a good candidate for a new treatment of tumours of the CNS. Further investigations are in progress to associate the title compound chemotherapy to radiotherapy in a rat model.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Neoplasias Encefálicas/metabolismo , Chalcona/análogos & derivados , Chalconas/farmacologia , Glioblastoma/metabolismo , Microtúbulos/metabolismo , Proteínas Proto-Oncogênicas c-bcr/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Apoptose , Barreira Hematoencefálica , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-bcr/antagonistas & inibidores , Ratos
18.
Biol Cell ; 100(7): 413-25, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18215117

RESUMO

BACKGROUND INFORMATION: Hsp90 (90 kDa heat-shock protein) plays a key role in the folding and activation of many client proteins involved in signal transduction and cell cycle control. The cycle of Hsp90 has been intimately associated with large conformational rearrangements, which are nucleotide-binding-dependent. However, up to now, our understanding of Hsp90 conformational changes derives from structural information, which refers to the crystal states of either recombinant Hsp90 constructs or the prokaryotic homologue HtpG (Hsp90 prokaryotic homologue). RESULTS AND DISCUSSION: Here, we present the first nucleotide-free structures of the entire eukaryotic Hsp90 (apo-Hsp90) obtained by small-angle X-ray scattering and single-particle cryo-EM (cryo-electron microscopy). We show that, in solution, apo-Hsp90 is in a conformational equilibrium between two open states that have never been described previously. By comparing our cryo-EM maps with HtpG and known Hsp90 structures, we establish that the structural changes involved in switching between the two Hsp90 apo-forms require large movements of the NTD (N-terminal domain) and MD (middle domain) around two flexible hinge regions. CONCLUSIONS: The present study shows, for the first time, the structure of the entire eukaryotic apo-Hsp90, along with its intrinsic flexibility. Although large structural rearrangements, leading to partial closure of the Hsp90 dimer, were previously attributed to the binding of nucleotides, our results reveal that they are in fact mainly due to the intrinsic flexibility of Hsp90 dimer. Taking into account the preponderant role of the dynamic nature of the structure of Hsp90, we reconsider the Hsp90 ATPase cycle.


Assuntos
Proteínas de Choque Térmico HSP90/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/ultraestrutura , Animais , Cristalografia por Raios X , Proteínas de Choque Térmico HSP90/ultraestrutura , Microscopia Eletrônica , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Soluções , Suínos
19.
Med Chem ; 5(2): 182-90, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19275717

RESUMO

The most widely used molecules in cancer chemotherapy are Vinca-alkaloids and Taxoids, numerous chemists attempted the synthesis of analogs which bind to their well-known tubulin pharmacological site. Unfortunately, tumors develop resistance to these compounds; therefore the definition of anchoring points and potential binding sites for new drugs on tubulin is of major interest. Caulerpenyne (Cyn), the major secondary metabolite synthesized by the green marine alga Caulerpa taxifolia could be one of these drugs, since it inhibits the assembly of tubulin and MTP (Barbier et al., 2001). We observed that the tubulin-Cyn complex is poorly reversed. Cyn did not bind to sulfhydryl groups and the measure of the extent of binding is 1.6 +/- 0.2 suggesting two potential binding sites. Then, we demonstrated by competition measurements that Cyn did not interact to colchicine, Taxol and Vinca-alkaloid binding domain. Finally, mass spectrometric analysis of proteolytic cleavage of tubulin-Cyn complex demonstrated that Cyn did not bind covalently to tubulin and evidenced two good candidate regions for Cyn binding, one on alpha-tubulin and the other on beta-tubulin.


Assuntos
Sesquiterpenos/química , Tubulina (Proteína)/química , Animais , Antibacterianos/química , Antibacterianos/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Sítios de Ligação , Ligação Competitiva , Colchicina/química , Colchicina/metabolismo , Depsipeptídeos/química , Depsipeptídeos/metabolismo , Isomerismo , Lactamas/química , Lactamas/metabolismo , Lactonas/química , Lactonas/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Moleculares , Paclitaxel/química , Paclitaxel/metabolismo , Ligação Proteica , Conformação Proteica , Sesquiterpenos/metabolismo , Ovinos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Compostos de Sulfidrila/química , Titulometria , Tripsina/química , Tubulina (Proteína)/metabolismo , Ultracentrifugação
20.
J Mol Biol ; 431(4): 687-695, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30580037

RESUMO

Tau is an intrinsically disordered microtubule-associated protein that is implicated in several neurodegenerative disorders called tauopathies. In these diseases, Tau is found in the form of intracellular inclusions that consist of aggregated paired helical filaments (PHFs) in neurons. Given the importance of this irreversible PHF formation in neurodegenerative disease, Tau aggregation has been extensively studied. Several different factors, such as mutations or post translational modifications, have been shown to influence the formation of late-stage non-reversible Tau aggregates. It was recently shown that zinc ions accelerated heparin-induced oligomerization of Tau constructs. Indeed, in vitro studies of PHFs have usually been performed in the presence of additional co-factors, such as heparin, in order to accelerate their formation. Using turbidimetry, we investigated the impact of zinc ions on Tau in the absence of heparin and found that zinc is able to induce a temperature-dependent reversible oligomerization of Tau. The obtained oligomers were not amyloid-like and dissociated instantly following zinc chelation or a temperature decrease. Finally, a combination of isothermal titration calorimetry and dynamic light scattering experiments showed zinc binding to a high-affinity binding site and three low-affinity sites on Tau, accompanied by a change in Tau folding. Altogether, our findings stress the importance of zinc in Tau oligomerization. This newly identified Zn-induced oligomerization mechanism may be a part of a pathway different of and concurrent to Tau aggregation cascade leading to PHF formation.


Assuntos
Zinco/farmacologia , Proteínas tau/metabolismo , Amiloide/metabolismo , Sítios de Ligação/efeitos dos fármacos , Heparina/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Polimerização/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA