Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(6): 061101, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31491188

RESUMO

Raman scattering enables unforeseen uses for the laser guide-star system of the Very Large Telescope. Here, we present the observation of one up-link sodium laser beam acquired with the ESPRESSO spectrograph at a resolution λ/Δλ∼140 000. In 900 s on source, we detect the pure rotational Raman lines of ^{16}O_{2}, ^{14}N_{2}, and ^{14}N^{15}N (tentatively) up to rotational quantum numbers J of 27, 24, and 9, respectively. We detect the ^{16}O_{2} fine-structure lines induced by the interaction of the electronic spin S and end-over-end rotational angular momentum N in the electronic ground state of this molecule up to N=9. The same spectrum also reveals the ν_{1←0} rotational-vibrational Q-branch for ^{16}O_{2} and ^{14}N_{2}. These observations demonstrate the potential of using laser guide-star systems as accurate calibration sources for characterizing new astronomical spectrographs.

2.
J Opt Soc Am A Opt Image Sci Vis ; 27(11): A97-105, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21045896

RESUMO

Observations of sodium density variability in the upper mesosphere/lower thermosphere, obtained using a high-resolution lidar system, show rapid fluctuations in the sodium centroid altitude. The temporal power spectrum extends above 1 Hz and is well-fit by a power law having a slope that is -1.95±0.12. These fluctuations produce focus errors in adaptive optics systems employing continuous-wave sodium laser guide stars, which can be significant for large-aperture telescopes. For a 30 m aperture diameter, the associated rms wavefront error is approximately 4 nm per meter of altitude change and increases as the square of the aperture diameter. The vertical velocity of the sodium centroid altitude is found to be ~23 ms(-1) on a 1 s time scale. If these high-frequency fluctuations arise primarily from advection of horizontal structure by the mesospheric wind, our data imply that variations in the sodium centroid altitude on the order of tens of meters occur over the horizontal scales spanned by proposed laser guide star asterisms. This leads to substantial differential focus errors (~107 nm over a 1 arc min separation with a 30 m aperture diameter) that may impact the performance of wide-field adaptive optics systems. Short-lasting and narrow sodium density enhancements, more than 1 order of magnitude above the local sodium density, occur due to advection of meteor trails. These have the ability to change the sodium centroid altitude by as much as 1 km in less than 1 s, which could result in temporary disruption of adaptive optics systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA