Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; : e202401233, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825747

RESUMO

The reaction of Re(CO)5Br with deprotonated 1H-(5-(2,2':6',2''-terpyridine)pyrid-2-yl)tetrazole yields a triangular assembly formed by tricarbonyl Re(I) vertices. Photophysical measurements reveal blue-green emission with a maximum at 520 nm, 32% quantum yield, and 2430 ns long-lived excited state decay lifetime in deaerated dichloromethane solution. Coordination of lanthanoid ions to the terpyridine units red-shifts the emission to 570 nm and also reveals efficient (90%) and fast sensitisation to both Eu(III) and Yb(III) at room temperature, with a similar rate constant kET of the order of 107 s-1. Efficient sensitisation of Eu(III) from Re(I) is unprecedented, especially when considering the close proximity in energy between the donor and acceptor excited states. On the other hand, comparative measurements at 77 K reveal that energy transfer to Yb(III) is two orders of magnitude slower than that to Eu(III). A two-step mechanism of sensitisation is therefore proposed, whereby the rate-determining step is a thermally activated energy transfer step between the Re(I) centre and the terpyridine functionality, followed by rapid energy transfer to the respective Ln(III) excited states. At 77 K, the direct Re(I) to Eu(III) energy transfer seems to proceed via a ligand-mediated superexchange Dexter-type mechanism.

2.
Anal Chem ; 95(43): 15917-15923, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37847864

RESUMO

Many families of lipid isomers remain unresolved by contemporary liquid chromatography-mass spectrometry approaches, leading to a significant underestimation of the structural diversity within the lipidome. While ion mobility coupled to mass spectrometry has provided an additional dimension of lipid isomer resolution, some isomers require a resolving power beyond the capabilities of conventional platforms. Here, we present the application of high-resolution traveling-wave ion mobility for the separation of lipid isomers that differ in (i) the location of a single carbon-carbon double bond, (ii) the stereochemistry of the double bond (cis or trans), or, for glycerolipids, (iii) the relative substitution of acyl chains on the glycerol backbone (sn-position). Collisional activation following mobility separation allowed identification of the carbon-carbon double-bond position and sn-position, enabling confident interpretation of variations in mobility peak abundance. To demonstrate the applicability of this method, double-bond and sn-position isomers of an abundant phosphatidylcholine composition were resolved in extracts from a prostate cancer cell line and identified by comparison to pure isomer reference standards, revealing the presence of up to six isomers. These findings suggest that ultrahigh-resolution ion mobility has broad potential for isomer-resolved lipidomics and is attractive to consider for future integration with other modes of ion activation, thereby bringing together advanced orthogonal separations and structure elucidation to provide a more complete picture of the lipidome.


Assuntos
Carbono , Fosfatidilcolinas , Isomerismo , Espectrometria de Massas/métodos , Fosfatidilcolinas/análise , Cromatografia Líquida
3.
Org Biomol Chem ; 21(8): 1780-1792, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36728689

RESUMO

Neurodegenerative diseases impose a considerable medical and public health burden on populations throughout the world. Oxidative stress, an imbalance in pro-oxidant/antioxidant homeostasis that leads to the generation of reactive oxygen species (ROS), has been implicated in the progression of a number of neurodegenerative diseases. The manipulation of ROS levels may represent a promising treatment option to slow down neurodegeneration, although adequate potency of treatments has not yet been achieved. Using a hybrid pharmacology approach, free radical nitroxide antioxidants were hybridised with a class of natural antioxidants, flavonoids, to form a potential multitargeted antioxidant. Modification of the Baker-Venkataraman reaction achieved the flavonoid-nitroxide hybrids (6-9) in modest yields. Antioxidant evaluation of the hybrids by cyclic voltammetry showed both redox functionalities were still active, with little influence on oxidation potential. Assessment of the peroxyl radical scavenging ability through an ORAC assay showed reduced antioxidant activity of the hybrids compared to their individual components. It was hypothesized that the presence of the phenol in the hybrids creates a more acidic medium which does not favour regeneration of the nitroxide from the corresponding oxammonium cation, disturbing the typical catalytic cycle of peroxyl radical scavenging by nitroxides. This work highlights the potential intricacies involved with drug hybridization as a strategy for new therapeutic development.


Assuntos
Antioxidantes , Peróxidos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio
4.
Angew Chem Int Ed Engl ; 62(27): e202302229, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37186056

RESUMO

Coordination cages can be used for enantio- and regioselective catalysis and for the selective sensing and separation of isomeric guest molecules. Here, stereoisomers of a family of coordination cages are resolved using ultra-high-resolution cyclic ion-mobility mass spectrometry (cIM-MS). The observed ratio of diastereomers is dependent on both the metal ion and counter ion. Moreover, the point groups can be assigned through complementary NMR experiments. This method enables the identification and interrogation of the individual isomers in complex mixtures of cages which cannot be performed in solution. Furthermore, these techniques allow the stability of individual isomers within the mixture to be probed, with the T-symmetric isomers in this case shown to be more robust than the C3 and S4 analogues.

5.
Angew Chem Int Ed Engl ; 61(45): e202212710, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36102176

RESUMO

Coordination cages with well-defined cavities show great promise in the field of catalysis on account of their unique combination of molecular confinement effects and transition-metal redox chemistry. Here, three coordination cages are reduced from their native 16+ oxidation state to the 2+ state in the gas phase without observable structural degradation. Using this method, the reaction rate constants for each reduction step were determined, with no noticeable differences arising following either the incorporation of a C60 -fullerene guest or alteration of the cage chemical structure. The reactivity of highly reduced cage species toward molecular oxygen is "switched-on" after a threshold number of reduction steps, which is influenced by guest molecules and the structure of cage components. These new experimental approaches provide a unique window to explore the chemistry of highly-reduced cage species that can be modulated by altering their structures and encapsulated guest species.

6.
J Am Chem Soc ; 143(19): 7292-7297, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33955743

RESUMO

We introduce a highly efficient ligation system based on a visible light-induced rearrangement affording a thiophenol which rapidly undergoes thiol-Michael additions. Unlike conventional light-triggered thiol-ene/yne systems, which rely on the use of photocaged bases/nucleophiles, (organo)-photo catalysts, or radical photoinitiators, our system provides a light-induced reaction in the absence of any additives. The ligation is self-catalyzed via the pyridine mediated deprotonation of the photochemically generated thiophenol. Subsequently, the thiol-Michael reaction between the thiophenol anion and electron deficient alkynes/alkenes proceeds additive-free. Hereby, the underlying photoinduced rearrangement of o-thiopyrinidylbenzaldehyde (oTPyB) generating the free thiol is described for the first time. We studied the influence of various reactions conditions as well as solvents and substrates. We exemplify our findings in a polymer end group modification and obtained macromolecules with excellent end group fidelity.

7.
Inorg Chem ; 60(9): 6731-6738, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33847127

RESUMO

A spin-crossover (SCO) active dinuclear Fe(II) triple helicate of the form [Fe2L3]4+ was combined with additional supramolecular components in order to manipulate the interhelical separation and steric congestion and to study the magneto-structural effects on the ensuing composite materials. A more separated array of SCO units produced more extensive spin-transitions, while a tightly arranged lattice environment stabilized the low-spin state. This study highlights the important interplay between crystal packing, intermolecualr interactions, and the magentic behavior of SCO materials.

8.
Angew Chem Int Ed Engl ; 57(35): 11325-11328, 2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-29998602

RESUMO

Elastically flexible crystals form an emerging class of materials that exhibit a range of notable properties. The mechanism of thermal expansion in flexible crystals of bis(acetylacetonato)copper(II) is compared with the mechanism of molecular motion induced by bending and it is demonstrated that the two mechanisms are distinct. Upon bending, individual molecules within the crystal structure reversibly rotate, while thermal expansion results predominantly in an increase in intermolecular separations with only minor changes to molecular orientation through rotation.

10.
Dalton Trans ; 50(21): 7400-7408, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33969860

RESUMO

A visible light absorbing [RuII(tpy)2]2+-type chromophore appended with a dipicolinic acid LnIII chelator has been prepared and complexed with several differing lanthanide cations to form the corresponding heterobimetallic d-f assemblies. The subseqent solution speciation analysed by 1H NMR spectroscopy revealed an unexpected decrease in the LnIII chelate complex stability, in particular for the 1 : 3 complex, when compared to the parent dipicolinic acid. As a result, the desired Ln(ML)3 complexes could not be isolated, and the 1 : 1 LnIII-ML complexes were instead characterised and investigated using steady state absorption and emission spectroscopy. Sensitised NIR emission from the YbIII, NdIII and ErIII complexes was observed upon 1MLCT excitation of the RuII based metalloligand in the visible region at ca. 485 nm. Investigations using transient absorption spectroscopy revealed essentially quantitative intersystem crossing to form the 3MLCT excited state, as expected, which then acts as the energy donor for the metalloligand based antennae effect, facilitating sensitisation efficiencies of 4.8, 17.0 and 37.4% respectively for the YbIII, ErIII and NdIII cations.


Assuntos
Luminescência , Ácidos Picolínicos , Complexos de Coordenação , Espectroscopia de Ressonância Magnética
11.
Chem Commun (Camb) ; 57(40): 4974-4975, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33870973

RESUMO

A re-refinement of the published but chemically implausible, crystal structure of "Form III" of 4-bromophenyl 4-bromobenzoate shows that it is not a polymorph, but instead a co-crystal containing both 4-bromophenyl 4-bromobenzoate (≈25%) and likely 4-bromophenyl 4-nitrobenzoate (≈75%).

12.
Dalton Trans ; 48(6): 2142-2149, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30667429

RESUMO

Cyclometallated Pt(ii) complexes with arylpolypyridyl ligands have impressive photophysical properties (high quantum yields, long lifetimes and tuneable emission) which can be readily tuned by modification of the organic ligand. Despite this, few examples of cyclometallated Pt(ii) complexes as sensitisers for Ln(iii) emission have been reported. Herein, we report the photophysical properties for a series of bimetallic complexes incorporating an N^C^N-coordinated Pt(ii) bearing an alkynyl terpyridine as a metalloligand for a Ln(iii) ion (where Ln = Nd, Gd, Er, Yb and Lu). Using a combination of steady state, time-resolved, and transient absorption experiments, the influence on the photophysical properties of the metalloligand exerted by the different Ln(iii) cations has been investigated, together with the energy transfer efficiency from the metalloligand to the Ln(iii) 4f* excited state.

13.
Nat Chem ; 10(1): 65-69, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29256512

RESUMO

Single crystals are typically brittle, inelastic materials. Such mechanical responses limit their use in practical applications, particularly in flexible electronics and optical devices. Here we describe single crystals of a well-known coordination compound-copper(II) acetylacetonate-that are flexible enough to be reversibly tied into a knot. Mechanical measurements indicate that the crystals exhibit an elasticity similar to that of soft materials such as nylon, and thus display properties normally associated with both hard and soft matter. Using microfocused synchrotron radiation, we mapped the changes in crystal structure that occur on bending, and determined the mechanism that allows this flexibility with atomic precision. We show that, under strain, the molecules in the crystal reversibly rotate, and thus reorganize to allow the mechanical compression and expansion required for elasticity and still maintain the integrity of the crystal structure.

14.
Chem Commun (Camb) ; 54(32): 3974-3976, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29610824

RESUMO

The rational, deliberate design of supramolecular architectures is of great importance for the discovery of complex materials. A three-dimensional cubic halogen-bonded network has been prepared by combination of an octahedral metal-containing halogen bond acceptor and a linear ditopic donor. This material displays α-Po pcu topology and is seven-fold interpenetrated. This is the first neutral, metal-containing three-dimensional halogen-bonded network to be reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA