Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Am Chem Soc ; 146(1): 1089-1099, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38156609

RESUMO

The photogeneration of multiple unpaired electron spins within molecules is a promising route to applications in quantum information science because they can be initialized into well-defined, multilevel quantum states (S > 1/2) and reproducibly fabricated by chemical synthesis. However, coherent manipulation of these spin states is difficult to realize in typical molecular systems due to the lack of selective addressability and short coherence times of the spin transitions. Here, these challenges are addressed by using donor-acceptor single cocrystals composed of pyrene and naphthalene dianhydride to host spatially oriented triplet excitons, which exhibit promising photogenerated qutrit properties. Time-resolved electron paramagnetic resonance (TREPR) spectroscopy demonstrates that spatially orienting triplet excitons in a single crystal platform imparts narrow, well-resolved, tunable resonances in the triplet EPR spectrum, allowing selective addressability of the spin sublevel transitions. Pulse-EPR spectroscopy reveals that at temperatures above 30 K, spin decoherence of these triplet excitons is driven by exciton diffusion. However, coherence is limited by electronic spin dipolar coupling below 30 K, where T2 varies nonlinearly with the optical excitation density due to exciton annihilation. Overall, an optimized coherence time of T2 = 7.1 µs at 20 K is achieved. These results provide important insights into designing solid-state molecular excitonic materials with improved spin qutrit properties.

2.
J Phys Chem A ; 128(1): 244-250, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38153126

RESUMO

Photoexcitation of molecular electron donor and/or acceptor chromophore aggregates can greatly affect their charge-transfer dynamics. Excitonic coupling not only alters the energy landscape in the excited state but may also open new photophysical pathways, such as symmetry-breaking charge separation (SB-CS). Here, we investigate the impact of excitonic coupling on a covalent donor-acceptor-acceptor system comprising a perylene donor (Per) and two perylenediimide (PDI) acceptor chromophores in which the three components are π-stacked in a geometry that is slipped along their long axes (Per-PDI2). Following selective photoexcitation of PDI, femtosecond transient absorption data for Per-PDI2 is compared to that for the single-donor, single-acceptor Per-PDI system, and the PDI2 dimer, which both have the same interchromophore geometry as Per-PDI2. The data show that electron transfer from Per to the lower exciton state of the PDI dimer is slower than that of the single PDI acceptor system. This is due to the lower free energy of the reaction for charge separation because of the electronic stabilization afforded by the excitonic coupling between the PDIs. While PDI2 was shown previously to undergo ultrafast SB-CS, the strong π-π electronic interaction of Per with the adjacent PDI in Per-PDI2 breaks the electronic symmetry of the PDI dimer, resulting in the oxidation of Per rather than SB-CS. These results show that the electronic coupling between molecules designed to accept charges produced by SB-CS in molecular dimers and the chromophores comprising the dimer must be balanced to favor SB-CS.

3.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38619061

RESUMO

Solar fuels catalysis is a promising route to efficiently harvesting, storing, and utilizing abundant solar energy. To achieve this promise, however, molecular systems must be designed with sustainable components that can balance numerous photophysical and chemical processes. To that end, we report on the structural and photophysical characterization of a series of Cu(I)-anthraquinone-based electron donor-acceptor dyads. The dyads utilized a heteroleptic Cu(I) bis-diimine architecture with a copper(I) bis-phenanthroline chromophore donor and anthraquinone electron acceptor. We characterized the structures of the complexes using x-ray crystallography and density functional theory calculations and the photophysical properties via resonance Raman and optical transient absorption spectroscopy. The calculations and resonance Raman spectroscopy revealed that excitation of the Cu(I) metal-to-ligand charge-transfer (MLCT) transition transfers the electron to a delocalized ligand orbital. The optical transient absorption spectroscopy demonstrated that each dyad formed the oxidized copper-reduced anthraquinone charge-separated state. Unlike most Cu(I) bis-phenanthroline complexes where increasingly bulky substituents on the phenanthroline ligands lead to longer MLCT excited-state lifetimes, here, we observe a decrease in the long-lived charge-separated state lifetime with increasing steric bulk. The charge-separated state lifetimes were best explained in the context of electron-transfer theory rather than with the energy gap law, which is typical for MLCT excited states, despite the complete conjugation between the phenanthroline and anthraquinone moieties.

4.
Inorg Chem ; 62(35): 14368-14376, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37620247

RESUMO

A key challenge to the effective utilization of solar energy is to promote efficient photoinduced charge transfer, specifically avoiding unproductive, circuitous electron-transfer pathways and optimizing the kinetics of charge separation and recombination. We hypothesize that one way to address this challenge is to develop a fundamental understanding of how to initiate and control directional photoinduced charge transfer, particularly for earth-abundant first-row transition-metal coordination complexes, which typically suffer from relatively short excited-state lifetimes. Here, we report a series of functionalized heteroleptic copper(I)bis(phenanthroline) complexes, which have allowed us to investigate the directionality of intramolecular photoinduced metal-to-ligand charge transfer (MLCT) as a function of the substituent Hammett parameter. Ultrafast transient absorption suggests a complicated interplay of MLCT localization and solvent interaction with the Cu(II) center of the MLCT state. This work provides a set of design principles for directional charge transfer in earth-abundant complexes and can be used to efficiently design pathways for connecting the molecular modules to catalysts or electrodes and integration into systems for light-driven catalysis.

5.
Inorg Chem ; 61(19): 7296-7307, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35507920

RESUMO

The steric strain around copper(I) in typical [Cu(NNR)2]+ complexes, where NNR is a diimine ligand substituted in α-positions of the nitrogen atoms by R, is known to strongly impact the excited-state properties. Generally speaking, the larger the R, the longer the emission lifetime and the higher the quantum yield. However, the stability of the coordination scaffold can be at stake if the steric strain imposed by R is too large. In this work, we explore a way of fine-tuning the steric strain around Cu(I) to reach a balance between high emission quantum yield and stability in a highly bulky copper(I) complex. Taking stable [Cu(dipp)2]+ and unstable [Cu(dtbp)2]+ (where dipp and dtbp are, respectively, 2,9-diisopropyl-1,10-phenanthroline and 2,9-di-tert-butyl-1,10-phenanthroline) as the boundary of two least and most sterically strained structures, we designed and characterized the nonsymmetrical ligand 2-isopropyl-9-tert-butyl-1,10-phenanthroline (L1) and corresponding complex [Cu(L1)2]+ (Cu1). The key experimental findings are that Cu1 exhibits a rigid tetrahedral geometry in the ground state, close to that of [Cu(dtbp)2]+ and with an intermediate stability between that of [Cu(dipp)2]+ and [Cu(dtbp)2]+. Conversely, the nonsymmetrical nature of ligand L1 leads to a shorter emission lifetime and smaller quantum yield than those of either [Cu(dipp)2]+ or [Cu(dtbp)2]+. This peculiar behavior is rationalized through the in depth analysis of the ultrafast dynamics of the excited state measured with optical transient absorption spectroscopy and theoretical calculations performed on the ground and excited state of Cu1. Our main findings are that the obtained complex is significantly more stable than [Cu(dtbp)2]+ despite the sterically strained coordination sphere. The nonsymmetrical nature of the ligand translates into a strongly distorted structure in the excited state. The distortion can be described as a rocking motion of one ligand, entailing the premature extinction of the excited state via several deactivation channels.

6.
Inorg Chem ; 61(48): 19119-19133, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36383429

RESUMO

Facilitating photoinduced electron transfer (PET) while minimizing rapid charge-recombination processes to produce a long-lived charge-separated (CS) state represents a primary challenge associated with achieving efficient solar fuel production. Natural photosynthetic systems employ intermolecular interactions to arrange the electron-transfer relay in reaction centers and promote a directional flow of electrons. This work explores a similar tactic through the synthesis and ground- and excited-state characterization of two Cu(I)bis(phenanthroline) chromophores with homoleptic and heteroleptic coordination geometries and which are functionalized with negatively charged sulfonate groups. The addition of sulfonate groups enables solubility in pure water, and it also induces assembly with the dicationic electron acceptor methyl viologen (MV2+) via bimolecular, dynamic electrostatic interactions. The effect of the sulfonate groups on the ground- and excited-state properties was evaluated by comparison with the unsulfonated analogues in 1:1 acetonitrile/water. The excited-state lifetimes for all sulfonated complexes are similar to what we expect from previous literature, with the exception of the sulfonated heteroleptic complex whose metal-to-ligand charge-transfer (MLCT) lifetime in water has two components that are fit to 10 and 77 ns. For the sulfonated complexes, we detected reduced MV+• in both solvent environments following MLCT excitation, but control measurements in 1:1 acetonitrile/water with the unsulfonated analogues showed no PET to MV2+, indicating that electrostatically driven supramolecular assemblies of the sulfonated complexes with MV2+ facilitate the observed PET. Additionally, the strength of the intermolecular interactions driving the formation of these assemblies changes drastically with the solvent environment. In 1:1 acetonitrile/water, PET occurred from both sulfonated complexes with quantum yields (ΦET) of 2-3% but increased to a remarkable 98% for the sulfonated heteroleptic complex with a 3 µs CS-state lifetime in water.


Assuntos
Fenantrolinas , Água , Ligantes , Solventes , Acetonitrilas
7.
J Phys Chem A ; 125(40): 8891-8898, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34597043

RESUMO

Interactions between metal centers in dimeric transition metal complexes (TMCs) play important roles in their excited-state energetics and pathways and, thus, affect their photophysical properties relevant to their applications, for example, photoluminescent materials and photocatalysis. Here, we report electronic and nuclear structural dynamics studies of two photoexcited pyrazolate-bridged [Pt(ppy)(µ-R2pz)]2-type Pt(II) dimers (ppy = 2-phenylpyridine, µ-R2pz = 3,5-substituted pyrazolate): [Pt(ppy)(µ-H2pz)]2 (1) and [Pt(NDI-ppy)(µ-Ph2pz)]2 (2, NDI = 1,4,5,8-naphthalenediimide), both of which have distinct ground-state Pt-Pt distances. X-ray transient absorption (XTA) spectroscopy at the Pt LIII-edge revealed a new d-orbital vacancy due to the one-electron oxidation of the Pt centers in 1 and 2. However, while a transient Pt-Pt contraction was observed in 2, such an effect was completely absent in 1, demonstrating how the excited states of these complexes are determined by the overlap of the Pt (dz2) orbitals, which is tuned by the steric bulk of the pyrazolate R-groups in the 3- and 5-positions. In tandem with analysis of the Pt-Pt distance structural parameter, we observed photoinduced electron transfer in 2 featuring a covalently linked NDI acceptor on the ppy ligand. The formation and subsequent decay of the NDI radical anion absorption signals were detected upon photoexcitation using optical transient absorption spectroscopy. The NDI radical anion decayed on the same time scale, hundreds of picoseconds, as that of the d-orbital vacancy signal of the oxidized Pt-Pt core observed in the XTA measurements. The data indicated an ultrafast formation of the charge-separated state and subsequent charge recombination to the original Pt(II-II) species.

8.
J Am Chem Soc ; 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33210910

RESUMO

Synthetic chemistry enables a bottom-up approach to quantum information science, where atoms can be deterministically positioned in a quantum bit or qubit. Two key requirements to realize quantum technologies are qubit initialization and read-out. By imbuing molecular spins with optical initialization and readout mechanisms, analogous to solid-state defects, molecules could be integrated into existing quantum infrastructure. To mimic the electronic structure of optically addressable defect sites, we designed the spin-triplet, V3+ complex, (C6F5)3trenVCNtBu (1). We measured the static spin properties as well as the spin coherence time of 1 demonstrating coherent control of this spin qubit with a 240 GHz electron paramagnetic resonance spectrometer powered by a free electron laser. We found that 1 exhibited narrow, near-infrared photoluminescence (PL) from a spin-singlet excited state. Using variable magnetic field PL spectroscopy, we resolved emission into each of the ground-state spin sublevels, a crucial component for spin-selective optical initialization and readout. This work demonstrates that trigonally symmetric, heteroleptic V3+ complexes are candidates for optical spin addressability.

9.
J Am Chem Soc ; 141(31): 12236-12239, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31302997

RESUMO

When a molecular electron donor interacts with multiple electron acceptors, quantum coherence can enhance the electron transfer (ET) rate. Here we report photodriven ET rates in a pair of donor-acceptor (D-A) compounds that link one anthracene (An) donor to one or two equivalent 1,4-benzoquinone (BQ) acceptors. Subpicosecond ET from the lowest excited singlet state of An to two BQs is about 2.4 times faster than ET to one BQ at room temperature, but about 5 times faster at cryogenic temperatures. This factor of 2 increase results from a transition from ET to one of two acceptors at room temperature to ET to a superposition state of the two acceptors with correlated system-bath fluctuations at low temperature.

10.
Faraday Discuss ; 216(0): 319-338, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31066389

RESUMO

Coherent interactions are prevalent in photodriven processes, ranging from photosynthetic energy transfer to superexchange-mediated electron transfer, resulting in numerous studies aimed towards identifying and understanding these interactions. A key motivator of this interest is the non-statistical scaling laws that result from coherently traversing multiple pathways due to quantum interference. To that end, we employed ultrafast transient absorption spectroscopy to measure electron transfer in two donor-acceptor molecular systems comprising a p-(9-anthryl)-N,N-dimethylaniline chromophore/electron donor and either one or two equivalent naphthalene-1,8:4,5-bis(dicarboximide) electron acceptors at both ambient and cryogenic temperatures. The two-acceptor compound shows a statistical factor of 2.1 ± 0.2 rate enhancement at room temperature and a non-statistical factor of 2.6 ± 0.2 rate enhancement at cryogenic temperatures, suggesting correlated interactions between the two acceptors with the donor and with the bath modes. Comparing the charge recombination rates indicates that the electron is delocalized over both acceptors at low temperature but localized on a single acceptor at room temperature. These results highlight the importance of shielding the system from bath fluctuations to preserve and ultimately exploit the coherent interactions.

11.
J Am Chem Soc ; 140(15): 5290-5299, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29589754

RESUMO

We demonstrate that the 10-phenyl-10 H-phenothiazine radical cation (PTZ+•) has a manifold of excited doublet states accessible using visible and near-infrared light that can serve as super-photooxidants with excited-state potentials is excess of +2.1 V vs SCE to power energy demanding oxidation reactions. Photoexcitation of PTZ+• in CH3CN with a 517 nm laser pulse populates a Dn electronically excited doublet state that decays first to the unrelaxed lowest electronic excited state, D1' (τ < 0.3 ps), followed by relaxation to D1 (τ = 10.9 ± 0.4 ps), which finally decays to D0 (τ = 32.3 ± 0.8 ps). D1' can also be populated directly using a lower energy 900 nm laser pulse, which results in a longer D1'→D1 relaxation time (τ = 19 ± 2 ps). To probe the oxidative power of PTZ+• photoexcited doublet states, PTZ+• was covalently linked to each of three hole acceptors, perylene (Per), 9,10-diphenylanthracene (DPA), and 10-phenyl-9-anthracenecarbonitrile (ACN), which have oxidation potentials of 1.04, 1.27, and 1.6 V vs SCE, respectively. In all three cases, photoexcitation wavelength dependent ultrafast hole transfer occurs from Dn, D1', or D1 of PTZ+• to Per, DPA, and ACN. The ability to take advantage of the additional oxidative power provided by the upper excited doublet states of PTZ+• will enable applications using this chromophore as a super-oxidant for energy-demanding reactions.

12.
Faraday Discuss ; 207(0): 217-232, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29362748

RESUMO

The ground- and excited-state electronic interactions between the nucleobase analog 8-(4'-phenylethynyl)deoxyguanosine, EG, with natural nucleobases and 7-deazaguanine, as well as between adjacent EG base analogs, have been characterized using a combination of steady-state spectroscopy and time-resolved fluorescence, absorption, and stimulated Raman spectroscopies. The properties of the nucleoside EG-H2 are only weakly perturbed upon incorporation into synthetic DNA hairpins in which thymine, cytosine or adenine are the bases flanking EG. Incorporation of the nucleoside to be adjacent to guanine or deazaguanine results in the formation of short-lived (40-80 ps) exciplexes, the charge transfer character of which increases as the oxidation potential of the donor decreases. Hairpins possessing two or three adjacent EG base analogs display exciton-coupled circular dichroism in the ground state and form long-lived fluorescent excited states upon electronic excitation. Incorporation of EG into the helical scaffold of the DNA hairpins places it adjacent to its neighboring nucleobases or a second EG, thus providing the close proximity required for the formation of exciplex or excimer intermediates upon geometric relaxation of the short-lived EG excited state. The three time-resolved spectroscopic methods employed permit both the characterization of the several intermediates and the kinetics of their formation and decay.


Assuntos
DNA/química , Fluorescência , Guanina/química , Conformação de Ácido Nucleico , Purinas/química , Guanina/análogos & derivados
13.
J Am Chem Soc ; 139(40): 14265-14276, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28880547

RESUMO

Facile exciton transport within ordered assemblies of π-stacked chromophores is essential for developing molecular photonic and electronic materials. Excimer states having variable charge transfer (CT) character are frequently implicated as promoting or inhibiting exciton mobility in such systems. However, determining the degree of CT character in excimers as a function of their structure has proven challenging. Herein, we report on a series of cyclophanes in which the interplanar distance between two phenyl-extended viologen (ExV2+) chromophores is varied systematically using a pair of o-, m-, or p-xylylene (o-, m-, or p-Xy) covalent linkers to produce o-ExBox4+ (3.5 Å), m-ExBox4+ (5.6 Å), and p-ExBox4+ (7.0 Å), respectively. The cyclophane structures are characterized using NMR spectroscopy in solution and single-crystal X-ray diffraction in the solid state. Femtosecond transient mid-IR and stimulated Raman spectroscopies show that the CT contribution to the excimer states formed in o-ExBox4+ and m-ExBox4+ depends on the distance between the chromophores within the cyclophanes, while in the weak interaction limit, as represented by p-ExBox4+ (7.0 Å), the lowest excited singlet state of ExV2+ exclusively photo-oxidizes the p-Xy spacer to give the p-Xy+•-ExV+• ion pair. Moreover, the vibrational spectra of the excimer state show that it assumes a geometry that is intermediate between that of the locally excited and CT states, approximately reflecting the degree of CT character.

14.
J Am Chem Soc ; 139(5): 2014-2021, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28080033

RESUMO

A series of semirigid perylene bisimide (PBI) macrocycles with varied ring size containing two to nine PBI chromophores were synthesized in a one-pot reaction and their photophysical properties characterized by fluorescence, steady-state, and transient absorption spectroscopy as well as femtosecond stimulated Raman spectroscopy. These macrocycles show solvent-dependent conformational equilibria and excited-state properties. In dichloromethane, the macrocycles prevail in wide-stretched conformations and upon photoexcitation exhibit symmetry-breaking charge separation followed by charge recombination to triplet states, which photosensitize singlet oxygen formation. In contrast, in aromatic solvents folding of the macrocycles with a distinct odd-even effect regarding the number of PBI chromophore units was observed in steady-state and time-resolved absorption and fluorescence spectroscopy as well as femtosecond stimulated Raman spectroscopy. These distinctive optical properties are attributable to the folding of the even-membered macrocycles into exciton-vibrational coupled dimer pairs in aromatic solvents. Studies in a variety of aromatic solvents indicate that these solvents embed between PBI dimer pairs and accordingly template the folding of even-membered PBI macrocycles into ropelike folded conformations that give rise to solvent-specific exciton-vibrational couplings in UV-vis absorption spectra. As a consequence of the embedding of solvent molecules in the coiled double-string rope architecture, highly solvent specific intensity ratios are observed for the two lowest-energy exciton-vibrational bands, enabling assignment of the respective solvent simply based on the absorption spectra measured for the tetramer macrocycle.

15.
J Am Chem Soc ; 139(44): 15660-15663, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29072446

RESUMO

Controlling spin-spin interactions in multispin molecular assemblies is important for developing new approaches to quantum information processing. In this work, a covalent electron donor-acceptor-radical triad is used to probe spin-selective reduction of the stable radical to its diamagnetic anion. The molecule consists of a perylene electron donor chromophore (D) bound to a pyromellitimide acceptor (A), which is, in turn, linked to a stable α,γ-bisdiphenylene-ß-phenylallyl radical (R•) to produce D-A-R•. Selective photoexcitation of D within D-A-R• results in ultrafast electron transfer to form the D+•-A-•-R• triradical, where D+•-A-• is a singlet spin-correlated radical pair (SCRP), in which both SCRP spins are uncorrelated relative to the R• spin. Subsequent ultrafast electron transfer within the triradical forms D+•-A-R-, but its yield is controlled by spin statistics of the uncorrelated A-•-R• radical pair, where the initial charge separation yields a 3:1 statistical mixture of D+•-3(A-•-R•) and D+•-1(A-•-R•), and subsequent reduction of R• only occurs in D+•-1(A-•-R•). These findings inform the design of multispin systems to transfer spin coherence between molecules targeting quantum information processing using the agency of SCRPs.

16.
J Am Chem Soc ; 139(17): 6120-6127, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28436654

RESUMO

The energy landscape of a supramolecular material can include different molecular packing configurations that differ in stability and function. We report here on a thermally driven crystalline order transition in the landscape of supramolecular nanostructures formed by charged chromophore amphiphiles in salt-containing aqueous solutions. An irreversible transition was observed from a metastable to a stable crystal phase within the nanostructures. In the stable crystalline phase, the molecules end up organized in a short scroll morphology at high ionic strengths and as long helical ribbons at lower salt content. This is interpreted as the result of the competition between electrostatic repulsive forces and attractive molecular interactions. Only the stable phase forms charge-transfer excitons upon exposure to visible light as indicated by absorbance and fluorescence features, second-order harmonic generation microscopy, and femtosecond transient absorbance spectroscopy. Interestingly, the supramolecular reconfiguration to the stable crystalline phase nanostructures enhances photosensitization of a proton reduction catalyst for hydrogen production.


Assuntos
Imidas/química , Perileno/química , Catálise , Cristalização , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Estrutura Molecular , Nanoestruturas/química , Tamanho da Partícula , Transição de Fase , Processos Fotoquímicos , Eletricidade Estática , Propriedades de Superfície , Termodinâmica
17.
Anal Chem ; 89(13): 6931-6935, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28605893

RESUMO

Femtosecond stimulated Raman spectroscopy (FSRS) is a vibrational spectroscopy technique that has been used in a wide variety of applications: from transient vibrational signature tracking to amplifying weak normal Raman scattering signals. Presented here is an application of FSRS to quantify the differential Raman scattering cross sections (DRSCs) of glucose. In using FSRS to determine the DRSCs of multiple glucose vibrational modes, we demonstrate the applicability of both stimulated Raman loss (SRL) spectroscopy and stimulated Raman gain (SRG) FSRS. Using the two analogous FSRS techniques, SRG and SRL, we determine that the DRSCs of glucose excited at 514.5 nm range from a low of 5.0 ± 1.1 × 10-30 to a high of 8.9 ± 0.9 × 10-30 cm2 molecule-1 sr-1. This work establishes both the compatibility of SRL for measuring DRSCs and values for the DRSC of multiple vibrational modes of glucose.

18.
J Phys Chem A ; 121(11): 2241-2252, 2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28257610

RESUMO

Photoinitiated subnanosecond electron transfer within covalently linked electron donor-acceptor molecules can result in the formation of a spin-correlated radical pair (SCRP) with a well-defined initial singlet spin configuration. Subsequent coherent mixing between the SCRP singlet and triplet ms = 0 spin states, the so-called zero quantum coherence (ZQC), is of potential interest in quantum information processing applications because the ZQC can be probed using pulse electron paramagnetic resonance (pulse-EPR) techniques. Here, pulse-EPR spectroscopy is utilized to examine the ZQC oscillation frequencies and ZQC dephasing in three structurally well-defined D-A systems. While transitions between the singlet and triplet ms = 0 spin states are formally forbidden (Δms = 0), they can be addressed using specific microwave pulse turning angles to map information from the ZQC onto observable single quantum coherences. In addition, by using structural variations to tune the singlet-triplet energy gap, the ZQC frequencies determined for this series of molecules indicate a stronger dependence on the electronic g-factor than on electron-nuclear hyperfine interactions.

19.
J Phys Chem A ; 121(8): 1607-1615, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28191955

RESUMO

The use of multiple chromophores as photosensitizers for catalysts involved in energy-demanding redox reactions is often complicated by electronic interactions between the chromophores. These interchromophore interactions can lead to processes, such as excimer formation and symmetry-breaking charge separation (SB-CS), that compete with efficient electron transfer to or from the catalyst. Here, two dimers of perylene bound either directly or through a xylyl spacer to a xanthene backbone were synthesized to probe the effects of interchromophore electronic coupling on excimer formation and SB-CS using ultrafast transient absorption spectroscopy. Two time constants for excimer formation in the 1-25 ps range were observed in each dimer due to the presence of rotational isomers having different degrees of interchromophore coupling. In highly polar acetonitrile, SB-CS competes with excimer formation in the more weakly coupled isomers followed by charge recombination with τCR = 72-85 ps to yield the excimer. The results of this study of perylene molecular dimers can inform the design of chromophore-catalyst systems for solar fuel production that utilize multiple perylene chromophores.

20.
J Phys Chem A ; 121(23): 4455-4463, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28531356

RESUMO

Photoexcitation of electron donor-acceptor molecules frequently produces radical ion pairs with well-defined initial spin-polarized states that have attracted significant interest for spintronics. Transfer of this initial spin polarization to a stable radical is predicted to depend on the rates of the radical ion pair recombination reactions, but this prediction has not been tested experimentally. In this study, a stable radical/electron donor/chromophore/electron acceptor molecule, BDPA•-mPD-ANI-NDI, where BDPA• is α,γ-bisdiphenylene-ß-phenylallyl, mPD is m-phenylenediamine, ANI is 4-aminonaphthalene-1,8-dicarboximide, and NDI is naphthalene-1,4:5,8-bis(dicarboximide), was synthesized. Photoexcitation of ANI produces the triradical BDPA•-mPD+•-ANI-NDI-• in which the mPD+•-ANI-NDI-• radical ion pair is spin coupled to the BDPA• stable radical. BDPA•-mPD+•-ANI-NDI-• and its counterpart lacking the stable radical are found to exhibit spin-selective charge recombination in which the triplet radical ion pair 3(mPD+•-ANI-NDI-•) is in equilibrium with the 3*NDI charge recombination product. Time-resolved EPR measurements show that this process is associated with an inversion of the sign of the polarization transferred to BDPA• over time. The polarization transfer rates are found to be strongly solvent dependent, as shifts in this equilibrium affect the spin dynamics. These results demonstrate that even small changes in electron transfer dynamics can have a large effect on the spin dynamics of photogenerated multispin systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA