Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
BMC Microbiol ; 24(1): 80, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459435

RESUMO

Chryseobacterium arthrosphaerae strain FS91703 was isolated from Rana nigromaculata in our previous study. To investigate the genomic characteristics, pathogenicity-related genes, antimicrobial resistance, and phylogenetic relationship of this strain, PacBio RS II and Illumina HiSeq 2000 platforms were used for the whole genome sequencing. The genome size of strain FS91703 was 5,435,691 bp and GC content was 37.78%. A total of 4,951 coding genes were predicted; 99 potential virulence factors homologs were identified. Analysis of antibiotic resistance genes revealed that strain FS91703 harbored 10 antibiotic resistance genes in 6 categories and 2 multidrug-resistant efflux pump genes, including adeG and farA. Strain FS91703 was sensitive to ß-lactam combination drugs, cephem, monobactam and carbapenems, intermediately resistant to phenicol, and resistant to penicillin, aminoglycosides, tetracycline, fluoroquinolones, and folate pathway inhibitors. Phylogenetic analysis revealed that strain FS91703 and C. arthrosphaerae CC-VM-7T were on the same branch of the phylogenetic tree based on 16 S rRNA; the ANI value between them was 96.99%; and the DDH values were 80.2, 72.2 and 81.6% by three default calculation formulae. These results suggested that strain FS91703 was a species of C. arthrosphaerae. Pan-genome analysis showed FS91703 had 566 unique genes compared with 13 other C. arthrosphaerae strains, and had a distant phylogenetic relationship with the other C. arthrosphaerae strains of the same branch in phylogenetic tree based on orthologous genes. The results of this study suggest that strain FS91703 is a multidrug-resistant and highly virulent bacterium, that differs from other C. arthrosphaerae strains at the genomic level. The knowledge about the genomic characteristics and antimicrobial resistance of strain FS91703 provides valuable insights into this rare species, as well as guidance for the treatment of the disease caused by FS91703 in Rana nigromaculata.


Assuntos
Chryseobacterium , Animais , DNA Bacteriano/genética , Filogenia , Sequenciamento Completo do Genoma , Chryseobacterium/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ranidae , Genoma Bacteriano
2.
J Sci Food Agric ; 102(15): 7087-7097, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35707876

RESUMO

BACKGROUND: The exopolysaccharides (EPS) produced by Lactobacillus and other probiotics are associated with many benefits, such as immune regulation, antioxidant properties, antitumor effect, and regulation of intestinal microbe homeostasis. In the present study, the modulatory effect of EPS produced by Lactobacillus rhamnosus ZFM231 on the intestinal flora of mice with inflammatory bowel disease induced by dextran sulfate solution was investigated. RESULTS: Results indicated that weight loss, colonic length, the disease activity index score and colonic tissue damage in mice were significantly improved by EPS treatment. Compared with the model group, in the EPS-treated group, the diversity of and the composition of gut microbiota at both phylum and genus levels were found to recover to the levels of normal group, indicating the effective modulation on gut microbiota by EPS; short-chain fatty acids, including acetic acid, propionic acid and butyric acid produced by intestinal microbial metabolism, increased significantly; the level of anti-inflammatory factor transforning growth factor-ß significantly increased and the level of pro-inflammatory factor tumor necrosis factor-α significantly decreased in the colonic cells of EPS-treated mice. CONCLUSION: It is clear that EPS produced by L. rhamnosus ZFM231 could find application in functional foods with the property of anti-ulcerative colitis. The experimental results provide new insights into the probiotic effect of EPS. © 2022 Society of Chemical Industry.


Assuntos
Colite , Microbioma Gastrointestinal , Lacticaseibacillus rhamnosus , Probióticos , Camundongos , Animais , Sulfato de Dextrana/efeitos adversos , Colite/induzido quimicamente , Probióticos/metabolismo , Colo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
3.
BMC Microbiol ; 21(1): 47, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588748

RESUMO

BACKGROUND: Gut microbiota is critical in maintaining human health, of which diversity and abundance are subject to significantly reduce in seniors. Gut microbiota is reported to be stable across the long adulthood in general, but lack of careful examination, especially for the midlife people. RESULTS: To characterize the gut microbiota in midlife, we investigated the faecal microbiota between two groups of healthy people, young, 20-39 years old, n = 15; and midlife, 40-60 years old, n = 15. Metabolic responses of the microbiota were studied through in vitro batch fermentation model. Although no difference was observed in the diversity indices between the two age groups, a wide range taxonomic changes were found in the faecal microbiota. Furthermore, substantial Bifidobacterium reduction was also found in both faecal and fermented samples. The faecal SCFAs are similar in both groups, as well as starch fermentation broth. However, after inulin fermentation, the acetate concentration and inulin degradation rate decreased while the gas production increased in midlife group, suggesting a deficiency of saccharolytic potential in midlife, especially for non-digestible carbohydrate. CONCLUSIONS: Our data demonstrate that gut microbiota begins to change as early as in midlife. The reduction in Bifidobacterium dominates the change of the microbiota composition in midlife resulting in attenuated saccharolytic capacity of inulin, possibly leading to insufficient acetate production which might be associated with healthy problems in this transition period from young to elderly.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Microbiota/genética , Adulto , Fatores Etários , Bactérias/classificação , Fibras na Dieta/metabolismo , Fezes/microbiologia , Fermentação , Humanos , Técnicas In Vitro , Inulina/metabolismo , Microbiota/fisiologia , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética
4.
Microb Cell Fact ; 18(1): 214, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842889

RESUMO

BACKGROUND: Increased inclusion of plant proteins in aquafeeds has become a common practice due to the high cost and limited supply of fish meal but generally leads to inferior growth performance and health problems of fish. Effective method is needed to improve the plant proteins utilization and eliminate their negative effects on fish. This study took a unique approach to improve the utilization of soybean meal (SBM) by fish through autochthonous plant-degrading microbe isolation and subsequent fermentation. RESULTS: A strain of Shewanella sp. MR-7 was isolated and identified as the leading microbe that could utilize SBM in the intestine of turbot. It was further optimized for SBM fermentation and able to improve the protein availability and degrade multiple anti-nutritional factors of SBM. The fishmeal was able to be replaced up to 45% by Shewanella sp. MR-7 fermented SBM compared to only up to 30% by SBM in experimental diets without adverse effects on growth and feed utilization of turbot after feeding trials. Further analyses showed that Shewanella sp. MR-7 fermentation significantly counteracted the SBM-induced adverse effects by increasing digestive enzymes activities, suppressing inflammatory responses, and alleviating microbiota dysbiosis in the intestine of turbot. CONCLUSIONS: This study demonstrated that plant protein utilization by fish could be significantly improved through pre-digestion with isolated plant-degrading host microbes. Further exploitation of autochthonous bacterial activities should be valuable for better performances of plant-based diets in aquaculture.


Assuntos
Ração Animal/microbiologia , Dieta , Fermentação , Linguados/microbiologia , Glycine max/metabolismo , Shewanella/metabolismo , Animais , Linguados/metabolismo , Shewanella/isolamento & purificação , Glycine max/microbiologia
5.
Fish Shellfish Immunol ; 93: 8-16, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31319205

RESUMO

High levels of soybean meal (SBM) in aquafeed leads to detrimental inflammatory response and oxidative stress in fish. In the present study, fermentation with Aspergillus awamori was conducted to explore the potential effects on improving the nutritional quality of soybean meal and the health status of turbot. A 63-day feeding trial (initial weight 8.53 ±â€¯0.11 g) was carried out to evaluate the utilization of fermented soybean meal (FSM) by juvenile turbot. 0% (FM, control), 30% (S30, F30), 45% (S45, F45), and 60% (S60, F60) of fish meal were replaced with SBM or FSM, respectively. As the results showed, fermentation significantly reduced the contents of anti-nutritional factors in SBM, including raffinose (-98.8%), glycinin (-98.5%), ß-conglycinin (-97.4%), trypsin inhibitors (-80%) and stachyose (-80%). A depression of fish growth performance and activities of superoxide dismutase and lysozyme were observed in S45 and S60 groups, while these inferiorities were only observed in F60 group. Meanwhile, fermentation also improved the heights of enterocytes and microvillus significantly in the F45 and F60 groups compared with those in SBM. An induced expression of anti-inflammatory cytokine transforming growth factor-ß and depression of pro-inflammatory cytokines tumor necrosis factor-α and interleukin-1ß in the distal intestine were observed in the F45 and F60 groups. Taken together, this study indicated that fermentation with Aspergillus awamori could improve the replacement level with soybean meal from 30% to 45% in turbot.


Assuntos
Antioxidantes/metabolismo , Aspergillus/química , Linguados/imunologia , Glycine max/química , Estresse Oxidativo/imunologia , Alimentos de Soja/análise , Ração Animal/análise , Animais , Dieta/veterinária , Fermentação , Linguados/crescimento & desenvolvimento , Linguados/metabolismo , Homeostase , Distribuição Aleatória
6.
Anaerobe ; 48: 206-214, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28882708

RESUMO

Isomaltooligosaccharides (IMOs) are enzymatically synthesized oligosaccharides that have potential prebiotic effects. Five IMO substrates with 2-16° of polymerization (DP) were studied for their fermentation capacities using human microbiomes in an in vitro batch fermentation model. Eleven fecal slurries belonging to three enterotypes, including the Bacteroides-, Prevotella- and Mixed-type, exhibited different degradation rates for long chain IMOs (DP 7 to 16). In contrast, the degradation rates for short chain IMOs (DP 2 to 6) were not affected by enterotypes. Both 16S rRNA gene sequencing and quantitative PCR demonstrated that, after fermentation, the Bifidobacterium growth with IMOs was primarily detected in the Bacteroides- and Mixed-type (non-Prevotella-type), and to a lesser degree in the Prevotella-type. Interestingly, the Prevotella-type microbiome had higher levels of propionic acid and butyric acid production than non-Prevotella-type microbiome after IMOs fermentation. Moreover, principal coordinate analysis (PCoA) of both denaturing gradient gel electrophoresis (DGGE) profiling and 16S rRNA sequencing data demonstrated that the microbiome community compositions were separately clustered based on IMO chain length, suggesting significant impact of DP on the bacterial community structure. The current results clearly demonstrated that the IMO chain length could modulate the structure and composition of the human colonic microbiome. Different responses to short and long chain IMOs were observed from three human enterotypes, indicating that IMOs may be used as therapeutic substrates for directly altering human colonic bacteria.


Assuntos
Fezes/microbiologia , Fermentação , Microbioma Gastrointestinal , Oligonucleotídeos/biossíntese , Bacteroides/genética , Bacteroides/metabolismo , Técnicas de Cultura Celular por Lotes , Bifidobacterium/genética , Bifidobacterium/metabolismo , Biodiversidade , Cromatografia em Camada Fina , Humanos
7.
Anaerobe ; 39: 19-25, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26891629

RESUMO

Alginate (Alg) has a long history as a food ingredient in East Asia. However, the human gut microbes responsible for the degradation of alginate and its derivatives have not been fully understood yet. Here, we report that alginate and the low molecular polymer derivatives of mannuronic acid oligosaccharides (MO) and guluronic acid oligosaccharides (GO) can be completely degraded and utilized at various rates by fecal microbiota obtained from six Chinese individuals. However, the derivative of propylene glycol alginate sodium sulfate (PSS) was not hydrolyzed. The bacteria having a pronounced ability to degrade Alg, MO and GO were isolated from human fecal samples and were identified as Bacteroides ovatus, Bacteroides xylanisolvens, and Bacteroides thetaiotaomicron. Alg, MO and GO can increase the production level of short chain fatty acids (SCFA), but GO generates the highest level of SCFA. Our data suggest that alginate and its derivatives could be degraded by specific bacteria in the human gut, providing the basis for the impacts of alginate and its derivates as special food additives on human health.


Assuntos
Alginatos/metabolismo , Bacteroides/metabolismo , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Alginatos/farmacologia , Bacteroides/classificação , Bacteroides/efeitos dos fármacos , Bacteroides/isolamento & purificação , Técnicas de Cultura Celular por Lotes , Meios de Cultura/química , Ácidos Graxos Voláteis/metabolismo , Fermentação , Ácido Glucurônico/metabolismo , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/metabolismo , Ácidos Hexurônicos/farmacologia , Humanos , Hidrólise , Oligossacarídeos/metabolismo
8.
Wei Sheng Wu Xue Bao ; 56(10): 1537-43, 2016 Oct 04.
Artigo em Zh | MEDLINE | ID: mdl-29741342

RESUMO

Antimicrobial peptides (AMPs) are bioactive short peptides produced in organisms. AMPs have important roles in resisting pathogen invasion. In recent years, several studies on intestinal microecology is hot and the influence of antimicrobial peptides on intestinal health is widely concerned. Relevant results have demonstrated that the expression level of AMPs can be used to assess the body's intestinal health, thereby an auxiliary method could be established through monitoring on the expression level of AMPs during disease prevention and treatment. In this paper, research advances in antimicrobial peptides in intestinal microflora structure and immune effect were summarized and analyzed to provide references for clinical diagnosis and treatment.


Assuntos
Antibacterianos/imunologia , Intestinos/imunologia , Peptídeos/imunologia , Animais , Microbioma Gastrointestinal , Humanos , Intestinos/microbiologia
9.
Microbiol Res ; 285: 127741, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38761487

RESUMO

Fructooligosaccharides (FOS) are a common prebiotic widely used in functional foods. Meanwhile, Saccharomyces boulardii is a fungal probiotic frequenly used in the clinical treatment of diarrhea. Compared with single use, the combination of prebiotics and probiotics as symbiotics may be more effective in regulating gut microbiota as recently reported in the literature. The present study aimed to investigate the effects of FOS, S. boulardii and their combination on the structure and metabolism of the gut microbiota in healthy primary and secondary school students using an in vitro fermentation model. The results indicated that S. boulardii alone could not effectively regulate the community structure and metabolism of the microbiota. However, both FOS and the combination of FOS and S. boulardii could effectively regulate the microbiota, significantly inhibiting the growth of Escherichia-Shigella and Bacteroides, and controlling the production of the gases including H2S and NH3. In addition, both FOS and the combination could significantly promote the growth of Bifidobacteria and Lactobacillus, lower environmental pH, and enhance several physiological functions related to synthesis and metabolism. Nevertheless, the combination had more unique benefits as it promoted the growth of Lactobacillus, significantly increased CO2 production and enhanced the functional pathways of carbon metabolism and pyruvic acid metabolism. These findings provide guidance for clinical application and a theoretical basis for the development of synbiotic preparations.


Assuntos
Fermentação , Microbioma Gastrointestinal , Oligossacarídeos , Prebióticos , Probióticos , Saccharomyces boulardii , Estudantes , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Saccharomyces boulardii/metabolismo , Humanos , Probióticos/metabolismo , Criança , Masculino , Adolescente , Feminino , Lactobacillus/metabolismo , Lactobacillus/crescimento & desenvolvimento , Bactérias/metabolismo , Bactérias/classificação , Fezes/microbiologia , Bifidobacterium/metabolismo , Bifidobacterium/crescimento & desenvolvimento
10.
Front Microbiol ; 15: 1356365, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835484

RESUMO

Objective: To examine the effects of an intervention with fructooligosaccharides (FOS), Saccharomyces boulardii, and their combination in a mouse model of colitis and to explore the mechanisms underlying these effects. Methods: The effects of FOS, S. boulardii, and their combination were evaluated in a DSS-induced mouse model of colitis. To this end, parameters such as body weight, the disease activity index (DAI), and colon length were examined in model mice. Subsequently, ELISA was employed to detect the serum levels of proinflammatory cytokines. Histopathological analysis was performed to estimate the progression of inflammation in the colon. Gas chromatography was used to determine the content of short-chain fatty acids (SCFAs) in the feces of model mice. Finally, 16S rRNA sequencing technology was used to analyze the gut microbiota composition. Results: FOS was slight effective in treating colitis and colitis-induced intestinal dysbiosis in mice. Meanwhile, S. boulardii could significantly reduced the DAI, inhibited the production of IL-1ß, and prevented colon shortening. Nevertheless, S. boulardii treatment alone failed to effectively regulate the gut microbiota. In contrast, the combined administration of FOS/S. boulardii resulted in better anti-inflammatory effects and enabled microbiota regulation. The FOS/S. boulardii combination (109 CFU/ml and 107 CFU/ml) significantly reduced the DAI, inhibited colitis, lowered IL-1ß and TNF-α production, and significantly improved the levels of butyric acid and isobutyric acid. However, FOS/S. boulardii 109 CFU/ml exerted stronger anti-inflammatory effects, inhibited IL-6 production and attenuated colon shortening. Meanwhile, FOS/S. boulardii 107 CFU/ml improved microbial regulation and alleviated the colitis-induced decrease in microbial diversity. The combination of FOS and S. boulardii significantly increased the abundance of Parabacteroides and decreased the abundance of Escherichia-Shigella. Additionally, it promoted the production of acetic acid and propionic acid. Conclusion: Compared with single administration, the combination can significantly increase the abundance of beneficial bacteria such as lactobacilli and Bifidobacteria and effectively regulate the gut microbiota composition. These results provide a scientific rationale for the prevention and treatment of colitis using a FOS/S. boulardii combination. They also offer a theoretical basis for the development of nutraceutical preparations containing FOS and S. boulardii.

11.
Front Nutr ; 11: 1411374, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39171106

RESUMO

Childhood obesity presents a serious health concern associated with gut microbiota alterations. Dietary interventions targeting the gut microbiota have emerged as promising strategies for managing obesity in children. This study aimed to elucidate the impact of stachyose (STS) supplementation on the gut microbiota composition and metabolic processes in obese children. Fecal samples were collected from 40 obese children (20 boys and 20 girls) aged between 6 and 15 and in vitro fermentation was conducted with or without the addition of STS, respectively, followed by 16S rRNA amplicon sequencing and analysis of short-chain fatty acids (SCFAs) and gases. Notably, our results revealed that STS supplementation led to significant alterations in gut microbiota composition, including an increase in the abundance of beneficial bacteria such as Bifidobacterium and Faecalibacterium, and a decrease in harmful bacteria including Escherichia-Shigella, Parabacteroides, Eggerthella, and Flavonifractor. Moreover, STS supplementation resulted in changes in SCFAs production, with significant increases in acetate levels and reductions in propionate and propionate, while simultaneously reducing the generation of gases such as H2S, H2, and NH3. The Area Under the Curve (AUC)-Random Forest algorithm and PICRUSt 2 were employed to identify valuable biomarkers and predict associations between the gut microbiota, metabolites, and metabolic pathways. The results not only contribute to the elucidation of STS's modulatory effects on gut microbiota but also underscore its potential in shaping metabolic activities within the gastrointestinal environment. Furthermore, our study underscores the significance of personalized nutrition interventions, particularly utilizing STS supplementation, in the management of childhood obesity through targeted modulation of gut microbial ecology and metabolic function.

12.
Food Funct ; 14(16): 7718-7726, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37548014

RESUMO

The development of novel prebiotics, which could regulate the intestinal microbiota, may help prevent and treat intestinal diseases. Here, we studied a homogeneous polysaccharide, LPE-2, produced by Lactobacillus pentosus YY-112 during fermentation. Methylation and gas chromatography-mass spectrometry analysis, combined with nuclear magnetic resonance results, suggested that the structural unit of LPE-2 comprises a branched mannan moiety and a linear glucan moiety. In vitro simulated intestinal fermentation showed that LPE-2 reduced harmful intestinal gas production and promoted short-chain fatty acid production (especially propionic acid). Moreover, it reduced the relative abundance of Escherichia-Shigella, increased that of Bifidobacterium and Lactobacillus, and had a stronger regulatory effect on intestinal flora in women than in men. The potential sex-specific prebiotic effects of LPE-2 on human intestinal health, were possibly related to its mannan branch with (1→2) and (1→3) linkages and backbones with flexible α configurations, which are sheared and degraded/utilized easier by Bifidobacterium and Lactobacillus.


Assuntos
Microbioma Gastrointestinal , Lactobacillus pentosus , Masculino , Humanos , Feminino , Mananas/farmacologia , Fezes/microbiologia , Prebióticos/análise , Lactobacillus , Fermentação
13.
Front Immunol ; 14: 1266997, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022669

RESUMO

Chito-oligosaccharides (COS) and ß-glucan are gradually being applied in aquaculture as antioxidants and immunomodulators. However, this study examined the effects of dietary supplementation of COS and ß-glucan on the water quality, gut microbiota, intestinal morphology, non-specific immunity, and meat quality of Chinese soft-shell turtle. To investigate the possible mechanisms, 3-year-old turtles were fed basal diet (CK group) and 0.1%, 0.5%, and 1% COS or ß-glucan supplemented diet for 4 weeks. Colon, liver, blood and muscle tissues, colon contents, water and sediment of paddy field samples were collected and analyzed after feeding 2 and 4 weeks. The results indicated that COS and ß-glucan altered microbial community composition and diversity in Chinese soft-shell turtles. The relative abundance of Cellulosilyticum, Helicobacter and Solibacillus were increased after feeding COS, while Romboutsia, Akkermansia and Paraclostridium were increased after feeding ß-glucan, whereas Cetobacterium, Vibrio and Edwardsiella were enriched in the control group. Furthermore, colon morphology analysis revealed that COS and ß-glucan improved the length and number of intestinal villi, and the effect of 0.5% ß-glucan was more obvious. Both ß-glucan and COS significantly improved liver and serum lysozyme activity and antibacterial capacity. COS significantly increased the total antioxidant capacity in the liver. Further, 0.1% ß-glucan significantly increased the activity of hepatic alkaline phosphatase, which closely related to the bacteria involved in lipid metabolism. Moreover, dietary supplementation with 1% COS and 1% ß-glucan significantly enhanced the content of total amino acids, especially umami amino acids, in muscle tissue, with ß-glucan exerting a stronger effect than COS. Additionally, these two prebiotics promoted the quality of culture water in paddy fields and reshaped the bacterial community composition of aquaculture environment. All these phenotypic changes were closely associated with the gut microbes regulated by these two prebiotics. In summary, the findings suggest that dietary supplementation with COS and ß-glucan in Pelodiscus sinensis could modulate the gut microbiota, improve intestinal morphology, enhance non-specific immunity and antioxidant capacity of liver and serum, increase meat quality, and improve the culture water environment. This study provides new insights and a comprehensive understanding of the positive effects of COS and ß-glucan on Pelodiscus sinensis.


Assuntos
Microbioma Gastrointestinal , Oligossacarídeos , Tartarugas , beta-Glucanas , Animais , Aminoácidos/metabolismo , Antioxidantes/farmacologia , beta-Glucanas/farmacologia , Dieta/veterinária , Imunidade , Oligossacarídeos/farmacologia , Qualidade da Água
14.
Front Microbiol ; 14: 1092729, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819019

RESUMO

Introduction: Flavonoids have antiviral, antitumor, anti-inflammatory, and other biological activities. They have high market value and are widely used in food and medicine fields. They also can regulate gut microbiota and promote human health. However, only a few flavonoids have been reported for their regulatory effects on human gut microbiota. Methods: The effects of hesperidin, hesperetin-7-O-glucoside, hesperetin, naringin, prunin, naringenin, rutin, isoquercitrin, and quercetin on gut microbiota structural and metabolic differences in healthy subjects were studied by means of in vitro simulated fermentation technology. Results: Results showed that the nine kinds of flavonoids mentioned above, especially hesperetin-7-O-glucoside, prunin, and isoquercitrin, were found to have more effect on the structure of human gut microbiota, and they could significantly enhance Bifidobacterium (p < 0.05). After 24 h of in vitro simulated fermentation, the relative abundance of intestinal probiotics (e.g., Lactobacillus) was increased by the three flavonoids and rutin. Furthermore, the relative abundance of potential pathogenic bacteria was decreased by the addition of hesperetin-7-O-glucoside, naringin, prunin, rutin, and isoquercitrin (e.g., Lachnoclostridium and Bilophila). Notably, prunin could also markedly decrease the content of H2S, NH3, and short-chain fatty acids. This performance fully demonstrated its broad-spectrum antibacterial activity. Discussion: This study demonstrates that flavonoids can regulate the imbalance of gut microbiota, and some differences in the regulatory effect are observed due to different structures. This work provides a theoretical basis for the wide application of flavonoids for food and medicine.

15.
Biomed Pharmacother ; 158: 114130, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36577329

RESUMO

Phellinus baumii extract (PBE) possesses considerable α-glucosidase-inhibited activity. This study investigated the hypoglycemic effect in vitro and in vivo using a glucose consumption assay in HepG2 cells, intragastric administration for ten weeks in STZ-induced mice, and intestinal flora fermentation in patients with type 2 diabetes to reveal the possible underlying mechanisms. PBE was prepared, including α-glucosidase-inhibited ethanol extract (EE) and aqueous extract (AE). In vitro, PBE promoted glucose consumption and enhanced glycogen content and hexokinase activity but lowered phosphoenolpyruvate carboxylase kinase activity in HepG2 cells. In vivo, PBE treatment significantly reduced the body weight (p < 0.05) and fasting blood glucose levels of diabetic mice (p < 0.01), with the lowest blood glucose level observed in the EE+AE group. Furthermore, the serum insulin levels and insulin resistance index (HOMA) of PBE-treated groups decreased significantly (p < 0.01). Moreover, gene expression levels of the IRS-1/PI3K/AKT pathway were significantly upregulated by PBE treatment (p < 0.01). In vitro fermentation demonstrated that EE significantly inhibited the production of H2S and NH3 in the intestinal flora fermentation model in diabetic patients (p < 0.05). In addition, the ratio of Firmicutes to Bacteroidetes was reduced, the growth of Lactobacillus and Prevotella 9 was promoted, and Pseudomonas aeruginosa was inhibited. This study provides new insights and clues for using PBE as a functional food and clinical drug for glycemic control.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Camundongos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , alfa-Glucosidases/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Fosfatidilinositol 3-Quinases , Glucose/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
16.
Front Microbiol ; 14: 1233840, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720150

RESUMO

Purpose: Diarrhea is among the top five causes of morbidity and mortality in children. Dysbiosis of the gut microbiota is considered the most important risk factor for diarrhea. Prebiotics have shown efficacy in treating diarrhea by regulating the balance of the gut microbiota in vivo. Methods: In this study, we used an in vitro fermentation system to prevent the interference of host-gut microbe interactions during in vivo examination and investigated the effect of fructo-oligosaccharides (FOS) on gut microbiota composition and metabolism in 39 pediatric patients with functional diarrhea. Results: 16S rRNA sequencing revealed that FOS significantly improved α- and ß-diversity in volunteers with pediatric diarrhea (p < 0.05). This improvement manifested as a significant increase (LDA > 2, p < 0.05) in probiotic bacteria (e.g., Bifidobacterium) and a significant inhibition (LDA > 2, p < 0.05) of harmful bacteria (e.g., Escherichia-Shigella). Notably, the analysis of bacterial metabolites after FOS treatment showed that the decrease in isobutyric acid, isovaleric acid, NH3, and H2S levels was positively correlated with the relative abundance of Lachnoclostridium. This decrease also showed the greatest negative correlation with the abundance of Streptococcus. Random forest analysis and ROC curve validation demonstrated that gut microbiota composition and metabolites were distinct between the FOS treatment and control groups (area under the curve [AUC] > 0.8). Functional prediction using PICRUSt 2 revealed that the FOS-induced alteration of gut microbiota was most likely mediated by effects on starch and sucrose metabolism. Conclusion: This study is the first to evince that FOS can modulate gut microbial disorders in children with functional diarrhea. Our findings provide a framework for the application of FOS to alleviate functional diarrhea in children and reduce the use of antibiotics for managing functional diarrhea-induced disturbances in the gut microbiota.

17.
Front Microbiol ; 14: 989303, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37378282

RESUMO

Introduction: Owing to urbanization, living habits have changed widely, leading to alterations in the intestinal microbiota of urban residents. However, there are few studies on the characteristics of intestinal microbiota of adolescents living in different urbanized areas in China. Methods: A total of 302 fecal samples collected from adolescent students in eastern China were examined. 16S rRNA high-throughput sequencing was used to identify the fecal microbiota. These data were combined with questionnaire survey results to investigate the effect of urbanization on the intestinal microbiota of adolescents in eastern China. Moreover, the role of lifestyle habits in this relationship was also evaluated. Results: The results revealed significant differences in the structure of the intestinal microbiota among adolescents living in regions with different levels of urbanization. Adolescents living in urban regions had a significantly higher proportion of Bacteroides (p < 0.001, FDR = 0.004), whereas those living in towns and rural regions had higher proportions of Bifidobacterium (p < 0.001, FDR < 0.001) and Prevotella (p < 0.05, FDR = 0.019). The diversity of the intestinal microbiota was higher in urban residents than in adolescents living in towns and rural regions (p < 0.05). In addition, the differences in intestinal microbiota across individuals living in cities, towns, and rural regions were related to dietary preferences, flavor preferences, and sleep and exercise durations. Adolescents who ate more meat had more Dorea (LDA = 3.622, p = 0.04), while the abundance of Escherichia-Shigella is higher among adolescents who ate more condiments (LDA = 4.285, p = 0.02). The abundance of Dialister was significantly increased in adolescents with longer sleep durations (LDA = 4.066, p = 0.03). Adolescents who exercised for a long duration had more Faecalibacterium than those who exercised for a shorter duration (LDA = 4.303, p = 0.04). Discussion: Our research has preliminarily demonstrated that there were differences in the composition of Gut microbiome in stool samples of adolescents living in different urbanized areas, and provide a scientific basis for the maintenance of a healthy intentional microbota in adolescences.

18.
Front Cell Infect Microbiol ; 12: 892049, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669115

RESUMO

Pleurotus citrinopileatus, a golden oyster mushroom, is popular in Asia and has pharmacological functions. However, the effects of polysaccharide-peptides extracted from Pleurotus citrinopileatus and underlying mechanism on digestive systme have not yet been clarified. Here, we determined the composition of two polysaccharide-peptides (PSI and PSII) from P. citrinopileatus and investigated the protective effects of on hepatoprotective and gut microbiota. The results showed that PSI and PSII were made up of similar monosaccharide moieties, except for the varying ratios. Furthermore, PSI and PSII showed that they have the hepatoprotective effects and significantly increased the viabilities and cellular total superoxide dismutase activities increased significantly in HepG2 cells. Intracellular triglyceride content and extracellular alanine aminotransferase and aspartate transaminase contents markedly decreased following treatment with 40 and 50 µg/mL PSI and PSII, respectively. Moreover, PSI and PSII activated the adiponectin pathway and reduced lipid accumulation in liver cells. PSI and PSII elevated short-chain fatty acid concentrations, especially butyric and acetic acids. 16S rRNA gene sequencing analysis showed that PSI promoted the relative abundances of Bifidobacteria, Lactobacillus, Faecalibacterium, as well as Prevotella generas in the gut. PSII markedly suppressed the relative abundances of Escherichia-Shigella and Bacteroides generas. We speculate that the PSI and PSII play a role through liver-gut axis system. Polysaccharide-peptides metabolize by gut microbiota to produce short-chain fatty acids (SCFAs) and in turn influence liver functions.


Assuntos
Microbioma Gastrointestinal , Pleurotus , Ácidos Graxos Voláteis/metabolismo , Humanos , Peptídeos/farmacologia , Pleurotus/química , Pleurotus/genética , Pleurotus/metabolismo , Polissacarídeos/farmacologia , RNA Ribossômico 16S/genética
19.
Front Nutr ; 9: 921137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35859755

RESUMO

In this study, the effects of zymosan (HG, hydrolyzed glucan) on the structure and metabolism of fecal microbiota in Chinese healthy people was investigated by an in vitro simulated intestinal microecology fermentation model. We found that HG significantly regulated fecal microbiota composition, including the increase of Bifidobacterium, Faecalibacterium, Prevotella and the decrease of Escherichia-Shigella. Moreover, HG significantly increased the total production of short chain fatty acids (SCFAs) and gases, in which the production of Acetic acid, Propionic acid, CO2, and H2 significantly increased while the production of Isovaleric acid and NH3 significantly decreased. Additionally, the supplement of HG showed certain differences in the regulation of microbiota from four groups. HG significantly increased the relative abundance of Bifidobacterium and significantly decreased the relative abundance of Escherichia-Shigella excluding the older men group. Meanwhile, and the relative abundance of Lactobacillus was significantly increased in young populations. And the relative abundance of Bacteroides was significantly decreased only in the young women. Furthermore, HG significantly increased H2 concentration only in older men. These findings suggest that HG, as a new generation of prebiotics, could regulate the structure of fecal microbiota and its metabolites in a better direction, but when HG participates in precision nutrition formula, it may be necessary to consider the differences in the utilization of different populations.

20.
Front Cell Infect Microbiol ; 12: 821662, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223547

RESUMO

Probiotics, prebiotics, and synbiotics can alleviate metabolic syndrome by altering the composition of the gut microbiota. Live combined Enterococcus faecium and Bacillus subtilis has been indicated to promote growth and reduce inflammation in animal models. However, the modulatory effects of live combined B. subtilis R-179 and E. faecium R-026 (LCBE) on human microbiota remain unclear. The current study examined the growth of these two strains in the presence of various oligosaccharides and assessed the effects of this probiotic mixture on human and murine gut microbiota in vitro and in vivo. Oligosaccharides improved the growth of E. faecium R-026 and B. subtilis R-179 as well as increased their production of short-chain fatty acids. E. faecium R-026 or B. subtilis R-179 co-incubated with Bifidobacterium and Clostridium significantly increased the number of the anaerobic bacteria Bifidobacterium longum and Clostridium butyricum by in vitro fermentation. Moreover, LCBE significantly reduced plasma cholesterol levels in mouse models of hyperlipidemia. LCBE combined with galacto-oligosaccharides led to a significant decrease in the Firmicutes/Bacteroidetes ratio and a significant increase in the relative abundance of Akkermansia and Bifidobacteria after treating mice with LCBE (0.23 g/day) for eight weeks. Furthermore, in vitro fermentation also showed that both the single strains and the two-strain mixture modulated human gut microbiota, resulting in increased Lactobacillus and Bifidobacteria, and decreased Escherichia-Shigella. Overall, these results suggest that LCBE can improve host health by reducing the level of cholesterol in mouse models by modifying the composition of the gut microbiota.


Assuntos
Enterococcus faecium , Microbioma Gastrointestinal , Probióticos , Animais , Bacillus subtilis , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Probióticos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA