Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 62(6): 2637-2651, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36716427

RESUMO

Desferrioxamine (DFO) has long been considered the gold standard chelator for incorporating [89Zr]Zr4+ in radiopharmaceuticals for positron emission tomography (PET) imaging. To improve the stability of DFO with zirconium-89 and to expand its coordination sphere to enable binding of large therapeutic radiometals, we have synthesized the highest denticity DFO derivatives to date: dodecadentate DFO2 and DFO2p. In this study, we describe the synthesis and characterization of a novel DFO-based chelator, DFO2p, which is comprised of two DFO strands connected by an p-NO2-phenyl linker and therefore contains double the chelating moieties of DFO (potential coordination number up to 12 vs 6). The chelator DFO2p offers an optimized synthesis comprised of only a single reaction step and improves water solubility relative to DFO2, but the shorter linker reduces molecular flexibility. Both DFO2 and DFO2p, each with 6 potential hydroxamate ligands, are able to reach a more energetically favorable 8-coordinate environment for Zr(IV) than DFO. The zirconium(IV) coordination environment of these complexes were evaluated by a combination of density functional theory (DFT) calculations and synchrotron spectroscopy (extended X-ray absorption fine structure), which suggest the inner-coordination sphere of zirconium(IV) to be comprised of the outermost four hydroxamate ligands. These results also confirm a single Zr(IV) in each chelator, and the hydroxide ligands which complete the coordination sphere of Zr(IV)-DFO are absent from Zr(IV)-DFO2 and Zr(IV)-DFO2p. Radiochemical stability studies with zirconium-89 revealed the order of real-world stability to be DFO2 > DFO2p ≫ DFO. The zirconium-89 complexes of these new high-denticity chelators were found to be far more stable than DFO, and the decreased molecular flexibility of DFO2p, relative to DFO2, could explain its decreased stability, relative to DFO2.

2.
J Phys Chem A ; 127(16): 3692-3704, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-36912654

RESUMO

The sulfones are a widespread group of organo-sulfur compounds, which contain the sulfonyl SO2 group attached to two carbons and have a formal sulfur oxidation state of +2. We have examined the sulfur K near-edge X-ray absorption spectroscopy (XAS) of a range of different sulfones and find substantial spectroscopic variability depending upon the nature of the coordination to the sulfonyl group. We have also examined the sulfur Kß X-ray emission spectroscopy (XES) of selected representative sulfones. Density functional theory simulations show satisfactory reproduction of both absorption and emission spectra while enabling assignment of the various transitions comprising the spectra. The correspondence between observed and simulated spectra shows promise for ab initio prediction of sulfur X-ray absorption and emission spectra of sulfones of any substituent. The absorption spectra and, to a lesser extent, the emission spectra are sensitive to the nature of the organic groups bound to the sulfonyl (SO2) moiety, clearly showing the potential of X-ray spectroscopy as an in situ probe of sulfone chemistry.

3.
Inorg Chem ; 61(13): 5201-5214, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35073478

RESUMO

Mercury is in some sense an enigmatic element. The element and some of its compounds are a natural part of the biogeochemical cycle; while many of these can be deadly poisons at higher levels, environmental levels in the absence of anthropogenic contributions would generally be below the threshold for concern. However, mercury pollution, particularly from burning fossil fuels such as coal, is providing dramatic and increasing emissions into the environment. Because of this, the environmental chemistry and toxicology of mercury are of growing importance, with the fate of mercury being vitally dependent upon its speciation. X-ray absorption spectroscopy (XAS) provides a powerful tool for in situ chemical speciation, but is severely limited by poor spectroscopic energy resolution. Here, we provide a systematic examination of mercury Lα1 high energy resolution fluorescence detected XAS (HERFD-XAS) as an approach for chemical speciation of mercury, in quantitative comparison with conventional Hg LIII-edge XAS. We show that, unlike some lighter elements, chemical shifts in the Lα1 X-ray fluorescence energy can be safely neglected, so that mercury Lα1 HERFD-XAS can be treated simply as a high-resolution version of conventional XAS. We present spectra of a range of mercury compounds that may be relevant to the environmental and life science research and show that density functional theory can produce adequate simulations of the spectra. We discuss strengths and limitations of the method and quantitatively demonstrate improvements both in speciation for complex mixtures and in background rejection for low concentrations.


Assuntos
Mercúrio , Espectroscopia por Absorção de Raios X
4.
Inorg Chem ; 61(37): 14626-14640, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36073854

RESUMO

Although Alzheimer's disease (AD) was first described over a century ago, it remains the leading cause of age-related dementia. Innumerable changes have been linked to the pathology of AD; however, there remains much discord regarding which might be the initial cause of the disease. The "amyloid cascade hypothesis" proposes that the amyloid ß (Aß) peptide is central to disease pathology, which is supported by elevated Aß levels in the brain before the development of symptoms and correlations of amyloid burden with cognitive impairment. The "metals hypothesis" proposes a role for metal ions such as iron, copper, and zinc in the pathology of AD, which is supported by the accumulation of these metals within amyloid plaques in the brain. Metals have been shown to induce aggregation of Aß, and metal ion chelators have been shown to reverse this reaction in vitro. 8-Hydroxyquinoline-based chelators showed early promise as anti-Alzheimer's drugs. Both 5-chloro-7-iodo-8-hydroxyquinoline (CQ) and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline (PBT2) underwent unsuccessful clinical trials for the treatment of AD. To gain insight into the mechanism of action of 8HQs, we have investigated the potential interaction of CQ, PBT2, and 5,7-dibromo-8-hydroxyquinoline (B2Q) with Cu(II)-bound Aß(1-42) using X-ray absorption spectroscopy (XAS), high energy resolution fluorescence detected (HERFD) XAS, and electron paramagnetic resonance (EPR). By XAS, we found CQ and B2Q sequestered ∼83% of the Cu(II) from Aß(1-42), whereas PBT2 sequestered only ∼59% of the Cu(II) from Aß(1-42), suggesting that CQ and B2Q have a higher relative Cu(II) affinity than PBT2. From our EPR, it became clear that PBT2 sequestered Cu(II) from a heterogeneous mixture of Cu(II)Aß(1-42) species in solution, leaving a single Cu(II)Aß(1-42) species. It follows that the Cu(II) site in this Cu(II)Aß(1-42) species is inaccessible to PBT2 and may be less solvent-exposed than in other Cu(II)Aß(1-42) species. We found no evidence to suggest that these 8HQs form ternary complexes with Cu(II)Aß(1-42).


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Clioquinol , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/química , Quelantes/farmacologia , Quelantes/uso terapêutico , Clioquinol/análogos & derivados , Clioquinol/química , Cobre/química , Humanos , Íons , Metais , Oxiquinolina/química , Oxiquinolina/farmacologia , Fragmentos de Peptídeos , Solventes , Zinco
5.
Anal Chem ; 93(26): 9235-9243, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34164981

RESUMO

Selenium is in many ways an enigmatic element. It is essential for health but toxic in excess, with the difference between the two doses being narrower than for any other element. Environmentally, selenium is of concern due to its toxicity. As the rarest of the essential elements, its low levels often provide challenges to the analytical chemist. X-ray absorption spectroscopy (XAS) provides a powerful tool for in situ chemical speciation but is severely limited by poor spectroscopic resolution arising from core-hole lifetime broadening. Here we explore selenium Kα1 high energy resolution fluorescence detected XAS (HERFD-XAS) as a novel approach for chemical speciation of selenium, in comparison with conventional Se K-edge XAS. We present spectra of a range of selenium species relevant to environmental and life science studies, including spectra of seleno-amino acids, which show strong similarities with S K-edge XAS of their sulfur congeners. We discuss strengths and limitations of HERFD-XAS, showing improvements in both speciation performance and low concentration detection. We also develop a simple method to correct fluorescence self-absorption artifacts, which is generally applicable to any HERFD-XAS experiment.


Assuntos
Selênio , Espectroscopia por Absorção de Raios X
6.
J Synchrotron Radiat ; 28(Pt 6): 1881-1890, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738943

RESUMO

Recent improvements in both X-ray detectors and readout speeds have led to a substantial increase in the volume of X-ray fluorescence data being produced at synchrotron facilities. This in turn results in increased challenges associated with processing and fitting such data, both temporally and computationally. Herein an abridging approach is described that both reduces and partially integrates X-ray fluorescence (XRF) data sets to obtain a fivefold total improvement in processing time with negligible decrease in quality of fitting. The approach is demonstrated using linear least-squares matrix inversion on XRF data with strongly overlapping fluorescent peaks. This approach is applicable to any type of linear algebra based fitting algorithm to fit spectra containing overlapping signals wherein the spectra also contain unimportant (non-characteristic) regions which add little (or no) weight to fitted values, e.g. energy regions in XRF spectra that contain little or no peak information.


Assuntos
Algoritmos , Síncrotrons , Fluorescência , Radiografia , Raios X
7.
J Synchrotron Radiat ; 28(Pt 6): 1845-1849, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738938

RESUMO

Oxygen K-edge X-ray absorption spectroscopy is used routinely to study a range of solid materials. However, liquid samples are studied less frequently at the oxygen K-edge due to the combined challenges of high-vacuum conditions and oxygen contamination of window materials. A modular sample holder design with a twist-seal sample containment system that provides a simple method to encapsulate liquid samples under high-vacuum conditions is presented. This work shows that pure silicon nitride windows have lower oxygen contamination than both diamond- and silicon-rich nitride windows, that the levels of oxygen contamination are related to the age of the windows, and provides a protocol for minimizing the background oxygen contamination. Acid-washed 100 nm-thick silicon nitride windows were found to give good quality oxygen K-edge data on dilute liquid samples.


Assuntos
Oxigênio , Radiografia , Espectroscopia por Absorção de Raios X , Raios X
8.
Inorg Chem ; 60(10): 7442-7452, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33938732

RESUMO

The compounds of mercury can be highly toxic and can interfere with a range of biological processes, although many aspects of the mechanism of toxicity are still obscure or unknown. One especially intriguing property of Hg(II) is its ability to bind DNA directly, making interstrand cross-links between thymine nucleobases in AT-rich sequences. We have used a combination of small molecule X-ray diffraction, X-ray spectroscopies, and computational chemistry to study the interactions of Hg(II) with thymine. We find that the energetically preferred mode of thymine binding in DNA is to the N3 and predict only minor distortions of the DNA structure on binding one Hg(II) to two cross-adjacent thymine nucleotides. The preferred geometry is predicted to be twisted away from coplanar through a torsion angle of between 32 and 43°. Using 1-methylthymine as a model, the bis-thymine coordination of Hg(II) is found to give a highly characteristic X-ray spectroscopic signature that is quite distinct from other previously described biological modes of binding of Hg(II). This work enlarges and deepens our view of significant biological targets of Hg(II) and demonstrates tools that can provide a characteristic signature for the binding of Hg(II) to DNA in more complex matrices including intact cells and tissues, laying the foundation for future studies of mechanisms of mercury toxicity.


Assuntos
DNA/química , Mercúrio/química , Timina/química , Sítios de Ligação , Teoria da Densidade Funcional
9.
Phys Chem Chem Phys ; 23(8): 4500-4508, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33355326

RESUMO

Until recently, sulfur was known as a "spectroscopically silent" element because of a paucity of convenient spectroscopic probes suitable for in situ chemical speciation. In recent years the technique of sulfur K-edge X-ray absorption spectroscopy (XAS) has been used extensively in sulfur speciation in a variety of different fields. With an initial focus on reduced forms of organic sulfur, we have explored a complementary X-ray based spectroscopy - sulfur Kß X-ray emission spectroscopy (XES) - as a potential analytical tool for sulfur speciation in complex samples. We compare and contrast the sensitivity of sulfur Kß XES with that of sulfur K-edge XAS, and find differing sensitivities for the two techniques. In some cases an approach involving both sulfur K-edge XAS and sulfur Kß XES may be a powerful combination for deducing sulfur speciation in samples containing complex mixtures.

10.
Inorg Chem ; 59(23): 17519-17534, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33226796

RESUMO

PBT2 (5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline) is a small Cu(II)-binding drug that has been investigated in the treatment of neurodegenerative diseases, namely, Alzheimer's disease (AD). PBT2 is thought to be highly effective at crossing the blood-brain barrier and has been proposed to exert anti-Alzheimer's effects through the modulation of metal ion concentrations in the brain, specifically the sequestration of Cu(II) from amyloid plaques. However, despite promising initial results in animal models and in clinical trials where PBT2 was shown to improve cognitive function, larger-scale clinical trials did not find PBT2 to have a significant effect on the amyloid plaque burden compared with controls. We propose that the results of these clinical trials likely point to a more complex mechanism of action for PBT2 other than simple Cu(II) sequestration. To this end, herein we have investigated the solution chemistry of Cu(II) coordination by PBT2 primarily using X-ray absorption spectroscopy (XAS), high-energy-resolution fluorescence-detected XAS, and electron paramagnetic resonance. We propose that a novel bis-PBT2 Cu(II) complex with asymmetric coordination may coexist in solution with a symmetric four-coordinate Cu(II)-bis-PBT2 complex distorted from coplanarity. Additionally, PBT2 is a more flexible ligand than other 8HQs because it can act as both a bidentate and a tridentate ligand as well as coordinate Cu(II) in both 1:1 and 2:1 PBT2/Cu(II) complexes.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Quelantes/uso terapêutico , Clioquinol/análogos & derivados , Complexos de Coordenação/uso terapêutico , Cobre/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Deficiências na Proteostase/tratamento farmacológico , Animais , Quelantes/síntese química , Quelantes/química , Clioquinol/química , Clioquinol/uso terapêutico , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cobre/química , Teoria da Densidade Funcional , Humanos , Ligantes , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Espectroscopia por Absorção de Raios X
11.
Inorg Chem ; 59(23): 17443-17452, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33183002

RESUMO

Positron emission tomography (PET) using radiolabeled, monoclonal antibodies has become an effective, noninvasive method for tumor detection and is a critical component of targeted radionuclide therapy. Metal ion chelator and bacterial siderophore desferrioxamine (DFO) is the gold standard compound for incorporation of zirconium-89 in radiotracers for PET imaging because it is thought to form a stable chelate with [89Zr]Zr4+. However, DFO may not bind zirconium-89 tightly in vivo, with free zirconium-89 reportedly liberated into the bones of experimental mouse models. Although high bone uptake has not been observed to date in humans, this potential instability has been proposed to be related to the unsaturated coordination sphere of [89Zr]Zr-DFO, which is thought to consist of the 3 hydroxamate groups of DFO and 1 or 2 water molecules. In this study, we have used a combination of X-ray absorption spectroscopy and density functional theory (DFT) geometry optimization calculations to further probe the coordination chemistry of this complex in solution. We find the extended X-ray absorption fine structure (EXAFS) curve fitting of an aqueous solution of Zr(IV)-DFO to be consistent with an 8-coordinate Zr with oxygen ligands. DFT calculations suggest that the most energetically favorable Zr(IV) coordination environment in DFO likely consists of the 3 hydroxamate ligands from DFO, each with bidentate coordination, and 2 hydroxide ligands. Further EXAFS curve fitting provides additional support for this model. Therefore, we propose that the coordination sphere of Zr(IV)-DFO is most likely completed by 2 hydroxide ligands rather than 2 water molecules, forming Zr(DFO)(OH)2.

12.
Inorg Chem ; 59(19): 13858-13874, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32936627

RESUMO

8-Hydroxyquinolines (8HQs) are a family of lipophilic metal ion chelators that have been used in a range of analytical and pharmaceutical applications over the last 100 years. More recently, CQ (clioquinol; 5-chloro-7-iodo-8-hydroxyquinoline) and PBT2 (5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline) have undergone clinical trials for the treatment of Alzheimer's disease and Huntington's disease. Because CQ and PBT2 appear to redistribute metals into cells, these compounds have been redefined as copper and zinc ionophores. Despite the attention surrounding the clinical trials and the clear link between 8HQs and metals, the fundamental solution chemistry of how these compounds bind divalent metals such as copper and zinc, as well as their mechanism(s) of action in mammalian systems, remains poorly understood. In this study, we used a combination of X-ray absorption spectroscopy (XAS), high-energy resolution fluorescence detected (HERFD) XAS, electron paramagnetic resonance (EPR), and UV-visible absorption spectroscopies to investigate the aqueous solution chemistry of a range of 8HQ derivatives. To circumvent the known solubility issues with 8HQ compounds and their complexes with Cu(II), and to avoid the use of abiological organic solvents, we have devised a surfactant buffer system to investigate these Cu(II) complexes in aqueous solution. Our study comprises the first comprehensive investigation of the Cu(II) complexes formed with many 8HQs of interest in aqueous solution, and it provides the first structural information on some of these complexes. We find that halogen substitutions in 8HQ derivatives appear to have little effect on the Cu(II) coordination environment; 5,7-dihalogenated 8HQ conformers all have a pseudo square planar Cu(II) bound by two quinolin-8-olate anions, in agreement with previous studies. Conversely, substituents in the 2-position of the 8HQ moiety appear to cause significant distortions from the typical square-planar-like coordination of most Cu(II)-bis-8HQ complexes, such that the 8HQ moieties in the Cu(II)-bis-8HQ complex are rotated approximately 30-40° apart in a "propeller-like" arrangement.

13.
Inorg Chem ; 59(5): 2711-2718, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32049511

RESUMO

Selenoenzymes, containing a selenocysteine (Sec) residue, fulfill important roles in biology. The mammalian thioredoxin reductase selenoenzymes are key regulators of antioxidant defense and redox signaling and are inhibited by methylmercury species and by the gold-containing drug auranofin. It has been proposed that such inhibition is mediated by metal binding to Sec in the enzyme. However, direct structural observations of these classes of inhibitors binding to selenoenzymes have been few to date. Here we therefore have used extended X-ray absorption fine structure as a direct structural probe to investigate binding to the selenium site in recombinant rat thioredoxin reductase 1 (TrxR1). The results demonstrate for the first time the direct and complete binding of the metal atom of the inhibitors to the selenium atom in TrxR1 for both methylmercury and auranofin, indicating that TrxR1 inhibition indeed can be attributed to such direct metal-selenium binding.


Assuntos
Auranofina/química , Auranofina/farmacologia , Compostos de Metilmercúrio/química , Compostos de Metilmercúrio/farmacologia , Selenocisteína/química , Tiorredoxinas/antagonistas & inibidores , Tiorredoxinas/química , Animais , Sítios de Ligação/efeitos dos fármacos , Ratos , Selenocisteína/metabolismo , Tiorredoxinas/metabolismo
14.
Environ Sci Technol ; 54(5): 2726-2733, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-31951385

RESUMO

Industrial release of mercury into the local Minamata environment with consequent poisoning of local communities through contaminated fish and shellfish consumption is considered the classic case of environmental mercury poisoning. However, the mercury species in the factory effluent has proved controversial, originally suggested as inorganic, and more recently as methylmercury species. We used newly available methods to re-examine the cerebellum of historic Cat 717, which was fed factory effluent mixed with food to confirm the source. Synchrotron high-energy-resolution fluorescence detection-X-ray absorption spectroscopy revealed sulfur-bound organometallic mercury with a minor ß-HgS phase. Density functional theory indicated energetic preference for α-mercuri-acetaldehyde as a waste product of aldehyde production. The consequences of this alternative species in the "classic" mercury poisoning should be re-evaluated.


Assuntos
Intoxicação do Sistema Nervoso por Mercúrio , Intoxicação por Mercúrio , Mercúrio , Compostos de Metilmercúrio , Animais , Gatos , Japão , Frutos do Mar
15.
Angew Chem Int Ed Engl ; 59(11): 4283-4287, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-31875332

RESUMO

Benzeneperoxyseleninic acid has been proposed as the key intermediate in the widely used epoxidation of alkenes with benzeneseleninic acid and hydrogen peroxide. However, it reacts sluggishly with cyclooctene and instead rapidly decomposes in solution to a mixed selenonium-selenonate salt that was identified by X-ray absorption and 77 Se NMR spectroscopy, as well as by single crystal X-ray diffraction. This process includes a selenoxide elimination of the peroxyseleninic acid with liberation of oxygen and additional redox steps. The salt is relatively stable in the solid state, but generates the corresponding selenonic acid in the presence of hydrogen peroxide. The selenonic acid is inert towards cyclooctene on its own; however, rapid epoxidation occurs when hydrogen peroxide is added. This shows that the selenonic acid must first be activated through further oxidation, presumably to the heretofore unknown benzeneperoxyselenonic acid. The latter is the principal oxidant in this epoxidation.

16.
Inorg Chem ; 58(9): 6294-6311, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31013069

RESUMO

Alzheimer's disease (AD) is the main cause of age-related dementia and currently affects approximately 5.7 million Americans. Major brain changes associated with AD pathology include accumulation of amyloid beta (Aß) protein fragments and formation of extracellular amyloid plaques. Redox-active metals mediate oligomerization of Aß, and the resultant metal-bound oligomers have been implicated in the putative formation of harmful, reactive species that could contribute to observed oxidative damage. In isolated plaque cores, Cu(II) is bound to Aß via histidine residues. Despite numerous structural studies of Cu(II) binding to synthetic Aß in vitro, there is still uncertainty surrounding Cu(II) coordination in Aß. In this study, we used X-ray absorption spectroscopy (XAS) and high energy resolution fluorescence detected (HERFD) XAS to investigate Cu(II) coordination in Aß(1-42) under various solution conditions. We found that the average coordination environment in Cu(II)Aß(1-42) is sensitive to X-ray photoreduction, changes in buffer composition, peptide concentration, and solution pH. Fitting of the extended X-ray absorption fine structure (EXAFS) suggests Cu(II) is bound in a mixture of coordination environments in monomeric Aß(1-42) under all conditions studied. However, it was evident that on average only a single histidine residue coordinates Cu(II) in monomeric Aß(1-42) at pH 6.1, in addition to 3 other oxygen or nitrogen ligands. Cu(II) coordination in Aß(1-42) at pH 7.4 is similarly 4-coordinate with oxygen and nitrogen ligands, although an average of 2 histidine residues appear to coordinate at this pH. At pH 9.0, the average Cu(II) coordination environment in Aß(1-42) appears to be 5-coordinate with oxygen and nitrogen ligands, including two histidine residues.


Assuntos
Peptídeos beta-Amiloides/química , Cobre/química , Histidina/química , Fragmentos de Peptídeos/química , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cobre/metabolismo , Histidina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Oxirredução , Fragmentos de Peptídeos/metabolismo , Espectroscopia por Absorção de Raios X
17.
J Phys Chem A ; 123(13): 2861-2866, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30836751

RESUMO

Aryl and mixed aryl-alkyl organic sulfides are important species in a variety of fields, including the drug and food industries. They also are present in fossil fuels, where they contribute to the range of sulfur compounds that must be removed by the fuel industry. We have used sulfur K-edge X-ray absorption spectroscopy, in combination with density functional theory calculations, to study the aryl sulfide diphenyl sulfide and two different aryl-alkyl sulfides. The sulfur K near-edge X-ray absorption spectra are strongly affected by the coordination of the phenyl ring and are distinct from spectra of the alkyl sulfides. For diphenyl sulfide the spectra are predicted to be sensitive to rotation about the S-C bonds, with experimental spectra corresponding to a sum of thermally accessible conformations. We also have investigated the vapor-phase spectrum of diphenyl sulfide, which is found to be very similar to that of toluene solutions of the compound.

18.
J Synchrotron Radiat ; 25(Pt 6): 1780-1789, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30407190

RESUMO

Synchrotron X-ray fluorescence imaging enables visualization and quantification of microscopic distributions of elements. This versatile technique has matured to the point where it is used in a wide range of research fields. The method can be used to quantitate the levels of different elements in the image on a pixel-by-pixel basis. Two approaches to X-ray fluorescence image analysis are commonly used, namely, (i) integrative analysis, or window binning, which simply sums the numbers of all photons detected within a specific energy region of interest; and (ii) parametric analysis, or fitting, in which emission spectra are represented by the sum of parameters representing a series of peaks and other contributing factors. This paper presents a quantitative comparison between these two methods of image analysis using X-ray fluorescence imaging of mouse brain-tissue sections; it is shown that substantial errors can result when data from overlapping emission lines are binned rather than fitted. These differences are explored using two different digital signal processing data-acquisition systems with different count-rate and emission-line resolution characteristics. Irrespective of the digital signal processing electronics, there are substantial differences in quantitation between the two approaches. Binning analyses are thus shown to contain significant errors that not only distort the data but in some cases result in complete reversal of trends between different tissue regions.

19.
Inorg Chem ; 57(14): 8205-8210, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29956922

RESUMO

We use X-ray-induced photochemistry, which is well known to cause changes in a number of systems, to reduce Hg(II) to Hg(0) in frozen aqueous solution with added glycerol maintained at 10 K. X-ray absorption spectroscopy was used to monitor the extent of the reaction and to characterize the species. An analysis of the extended X-ray absorption fine structure (EXAFS) of the photochemical product indicated a nearly monatomic Hg(0) species bound only by long, weak bonds to oxygens at ∼3.5 Å. The results of the EXAFS analysis agree quantitatively with the results of density functional theory calculations using the meta-GGA approximation with the M11-L functional. This is the first structural characterization of nearly monatomic Hg(0) bound by hard ligands similar to those expected in aqueous environmental systems. We conclude that Hg(0) is expected to exist in solution as a nearly monatomic entity.

20.
Inorg Chem ; 57(17): 10867-10872, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30133265

RESUMO

Selenium-based selenyl free radicals are chemical entities that may be involved in a range of biochemical processes. We report the first X-ray spectroscopic observation of a selenyl radical species generated photochemically by X-ray irradiation of low-temperature solutions of l-selenocysteine. We have employed high energy resolution fluorescence detected X-ray absorption spectroscopy (HERFD-XAS) and electron paramagnetic resonance (EPR) spectroscopy, coupled with density functional theory calculations, to characterize and understand the species. The HERFD-XAS spectrum of the selenyl radical is distinguished by a uniquely low-energy transition with a peak energy at 12 659.0 eV, which corresponds to a 1s → 4p transition to the singly occupied molecular orbital of the free radical. The EPR spectrum shows the broad features and highly anisotropic g-values that are expected for a selenium free radical species. The availability of spectroscopic probes for selenyl radicals may assist in understanding why life chooses selenium over sulfur in selected biochemical processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA