Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cells ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655883

RESUMO

Fully grown oocytes have the natural ability to transform two terminally differentiated gametes into a totipotent zygote representing acquisition of totipotency. This process wholly depends on maternal-effect factors (MFs). MFs stored in the eggs are therefore likely to be able to induce cellular reprogramming to a totipotency state. Here we report the generation of totipotent-like stem cells from mESCs using 4MFs Hsf1, Zar1, Padi6 and Npm2, designated as MFiTLSCs. MFiTLSCs exhibited unique and inherent capability to differentiate into embryonic and extraembryonic derivatives. Transcriptomic analysis revealed that MFiTLSCs are enriched with 2-cell-specific genes that appear to synergistically induce a transcriptional repressive state, in that parental genomes are remodelled to a poised transcriptional repression state while totipotency is established following fertilization. This method to derive MFiTLSCs could help advance understanding of fate determinations of totipotent stem cells in a physiological context and establish a foundation for development of oocyte biology-based reprogramming technology.

2.
Cryobiology ; 93: 62-69, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32092295

RESUMO

Cryopreservation of mammalian cells has to date typically been conducted in cryovials, but there are applications where cryopreservation of primary cells in multiwell plates would be advantageous. However excessive supercooling in the small volumes of liquid in each well of the multiwell plates is inevitable without intervention and tends to result in high and variable cell mortality. Here, we describe a technique for cryopreservation of adhered primary bovine granulosa cells in 96-well plates by controlled rate freezing using controlled ice nucleation. Inducing ice nucleation at warm supercooled temperatures (less than 5 °C below the melting point) during cryopreservation using a manual seeding technique significantly improved post-thaw recovery from 29.6% (SD = 8.3%) where nucleation was left uncontrolled to 57.7% (9.3%) when averaged over 8 replicate cultures (p < 0.001). Detachment of thawed cells was qualitatively observed to be more prevalent in wells which did not have ice nucleation control which suggests cryopreserved cell monolayer detachment may be a consequence of deep supercooling. Using an infra-red thermography technique we showed that many aliquots of cryoprotectant solution in 96-well plates can supercool to temperatures below -20 °C when nucleation is not controlled, and also that the freezing temperatures observed are highly variable despite stringent attempts to remove contaminants acting as nucleation sites. We conclude that successful cryopreservation of cells in 96-well plates, or any small volume format, requires control of ice nucleation.


Assuntos
Criopreservação/métodos , Células da Granulosa , Animais , Bovinos , Temperatura Baixa , Crioprotetores/farmacologia , Feminino , Congelamento , Gelo
3.
Acta Obstet Gynecol Scand ; 98(5): 573-582, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30773617

RESUMO

This paper provides a summary of the areas of survival from childhood, teenage and young adult cancers and the significant late effects that can arise from treatment; with particular focus on the area of reproductive health and the impact on both fertility and pregnancy. To complete this review, Web of Science and MEDLINE were used. Search terms included: ""survival AND childhood OR teenage OR young adult cancer", "late effects", "childhood cancer", "teenage AND/OR young adult cancer", AND "fertility after cancer" OR "pregnancy AND cancer" OR "fertility preservation". Additionally, the clinical expertise of the authors was drawn upon. Childhood cancer is a thankfully rare occurrence; however, the incidence is increasing. Survival rates remain high and this means that a growing population of childhood and young adult cancer survivors are reaching adulthood. For some of these adults, although cured of their cancer, they are now facing a future with lasting effects on their health from their treatments. These effects, commonly referred to as late effects, are defined as health problems related either directly to the underlying cancer or to its treatment and which occur months or years after treatment has finished. Reproductive health is an important consideration for these patients, and although many will be able to conceive naturally, some will exhibit impaired fertility after their treatments. This can include difficulties at all points along the path from conception to delivery of a live, healthy offspring. High-quality, large-population evidence is sparse in many areas relating to fertility risk from treatment and the maternal and fetal health of childhood cancer survivors. Yet given the potential for complications, the authors advocate consideration of fertility at the time of diagnosis and before potentially gonadotoxic treatment.


Assuntos
Preservação da Fertilidade/métodos , Neoplasias/terapia , Saúde Reprodutiva , Sobreviventes de Câncer , Criança , Tomada de Decisão Clínica , Feminino , Humanos
4.
J Assist Reprod Genet ; 34(1): 23-31, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27646122

RESUMO

PURPOSE: Gametocyte-specific factor 1 has been shown in other species to be required for the silencing of retrotransposons via the Piwi-interacting RNA (piRNA) pathway. In this study, we aimed to isolate and assess expression of transcripts of the gametocyte-specific factor 1 (GTSF1) gene in the human female germline and in preimplantation embryos. METHODS: Complementary DNA (cDNA) libraries from human fetal ovaries and testes, human oocytes and preimplantation embryos and ovarian follicles isolated from an adult ovarian cortex biopsy were used to as templates for PCR, cloning and sequencing, and real time PCR experiments of GTSF1 expression. RESULTS: GTSF1 cDNA clones that covered the entire coding region were isolated from human oocytes and preimplantation embryos. GTSF1 mRNA expression was detected in archived cDNAs from staged human ovarian follicles, germinal vesicle (GV) stage oocytes, metaphase II oocytes, and morula and blastocyst stage preimplantation embryos. Within the adult female germline, expression was highest in GV oocytes. GTSF1 mRNA expression was also assessed in human fetal ovary and was observed to increase during gestation, from 8 to 21 weeks, during which time oogonia enter meiosis and primordial follicle formation first occurs. In human fetal testis, GTSF1 expression also increased from 8 to 19 weeks. CONCLUSIONS: To our knowledge, this report is the first to describe the expression of the human GTSF1 gene in human gametes and preimplantation embryos.


Assuntos
Desenvolvimento Embrionário/genética , Células Germinativas , Meiose/genética , Proteínas/genética , Adulto , Blastocisto/metabolismo , DNA Complementar , Feminino , Feto , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/metabolismo , Proteínas/metabolismo
5.
Hum Reprod ; 30(11): 2463-75, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26358785

RESUMO

STUDY QUESTION: What clinical practices, patient management strategies and experimental methods are currently being used to preserve and restore the fertility of prepubertal boys and adolescent males? SUMMARY ANSWER: Based on a review of the clinical literature and research evidence for sperm freezing and testicular tissue cryopreservation, and after consideration of the relevant ethical and legal challenges, an algorithm for the cryopreservation of sperm and testicular tissue is proposed for prepubertal boys and adolescent males at high risk of fertility loss. WHAT IS KNOWN ALREADY: A known late effect of the chemotherapy agents and radiation exposure regimes used to treat childhood cancers and other non-malignant conditions in males is the damage and/or loss of the proliferating spermatogonial stem cells in the testis. Cryopreservation of spermatozoa is the first line treatment for fertility preservation in adolescent males. Where sperm retrieval is impossible, such as in prepubertal boys, or it is unfeasible in adolescents prior to the onset of ablative therapies, alternative experimental treatments such as testicular tissue cryopreservation and the harvesting and banking of isolated spermatogonial stem cells can now be proposed as viable means of preserving fertility. STUDY DESIGN, SIZE, DURATION: Advances in clinical treatments, patient management strategies and the research methods used to preserve sperm and testicular tissue for prepubertal boys and adolescents were reviewed. A snapshot of the up-take of testis cryopreservation as a means to preserve the fertility of young males prior to December 2012 was provided using a questionnaire. PARTICIPANTS/MATERIALS, SETTING, METHODS: A comprehensive literature review was conducted. In addition, survey results of testis freezing practices in young patients were collated from 24 European centres and Israeli University Hospitals. MAIN RESULTS AND THE ROLE OF CHANCE: There is increasing evidence of the use of testicular tissue cryopreservation as a means to preserve the fertility of pre- and peri-pubertal boys of up to 16 year-old. The survey results indicate that of the 14 respondents, half of the centres were actively offering testis tissue cryobanking as a means of safeguarding the future fertility of boys and adolescents as more than 260 young patients (age range less than 1 year old to 16 years of age), had already undergone testicular tissue retrieval and storage for fertility preservation. The remaining centres were considering the implementation of a tissue-based fertility preservation programme for boys undergoing oncological treatments. LIMITATIONS, REASONS FOR CAUTION: The data collected were limited by the scope of the questionnaire, the geographical range of the survey area, and the small number of respondents. WIDER IMPLICATIONS OF THE FINDINGS: The clinical and research questions identified and the ethical and legal issues raised are highly relevant to the multi-disciplinary teams developing treatment strategies to preserve the fertility of prepubertal and adolescent boys who have a high risk of fertility loss due to ablative interventions, trauma or genetic pre-disposition.


Assuntos
Criopreservação/métodos , Preservação da Fertilidade/métodos , Testículo , Adolescente , Criança , Europa (Continente) , Humanos , Masculino
6.
Am J Hum Genet ; 89(3): 451-8, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21885028

RESUMO

Familial biparental hydatidiform mole (FBHM) is the only known pure maternal-effect recessive inherited disorder in humans. Affected women, although developmentally normal themselves, suffer repeated pregnancy loss because of the development of the conceptus into a complete hydatidiform mole in which extraembryonic trophoblastic tissue develops but the embryo itself suffers early demise. This developmental phenotype results from a genome-wide failure to correctly specify or maintain a maternal epigenotype at imprinted loci. Most cases of FBHM result from mutations of NLRP7, but genetic heterogeneity has been demonstrated. Here, we report biallelic mutations of C6orf221 in three families with FBHM. The previously described biological properties of their respective gene families suggest that NLRP7 and C6orf221 may interact as components of an oocyte complex that is directly or indirectly required for determination of epigenetic status on the oocyte genome.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Impressão Genômica/fisiologia , Mola Hidatiforme/genética , Oócitos/fisiologia , Proteínas/genética , Proteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Bases , Linhagem Celular , Feminino , Genes Recessivos/genética , Impressão Genômica/genética , Humanos , Imuno-Histoquímica , Dados de Sequência Molecular , Mutação/genética , Oócitos/metabolismo , Linhagem , Gravidez , Alinhamento de Sequência , Análise de Sequência de DNA
8.
Mol Hum Reprod ; 19(7): 444-50, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23468533

RESUMO

Mitochondria are responsible for the production of ATP, which drives cellular metabolic and biosynthetic processes. This is the first study to quantify the mtDNA copy number across all stages of oogenesis in a large monovulatory species, it includes assessment of the activity of mitochondria in germinal vesicle (GV) and metaphase II (MII) oocytes through JC1 staining. Primordial to early antral follicles (n = 249) were isolated from the sheep ovarian cortex following digestion at 37°C for 1 h and all oocytes were disaggregated from their somatic cells. Germinal vesicle oocytes (n = 133) were aspirated from 3- to 5-mm diameter antral follicles, and mature MII oocytes (n = 71) were generated following in vitro maturation (IVM). The mtDNA copy number in each oocyte was quantified using real-time PCR and showed a progressive, but variable increase in the amount of mtDNA in oocytes from primordial follicles (605 ± 205, n = 8) to mature MII oocytes (744 633 ± 115 799, n = 13; P < 0.05). Mitochondrial activity (P > 0.05) was not altered during meiotic progression from GV to MII during IVM. The observed increase in the mtDNA copy number across oogenesis reflects the changing ATP demands needed to orchestrate cytoskeletal and cytoplasmic reorganization during oocyte growth and maturation and the need to fuel the resumption of meiosis in mature oocytes following the pre-ovulatory gonadotrophin surge.


Assuntos
DNA Mitocondrial/genética , Oócitos/metabolismo , Oogênese/fisiologia , Animais , Feminino , Fluorometria , Meiose/genética , Meiose/fisiologia , Oogênese/genética , Reação em Cadeia da Polimerase em Tempo Real , Ovinos
9.
Syst Biol Reprod Med ; 69(1): 3-19, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36576378

RESUMO

Increasing female age is accompanied by a corresponding fall in her fertility. This decline is influenced by a variety of factors over an individual's life course including background genetics, local environment and diet. Studying both coding and non-coding RNAs of the embryo could aid our understanding of the causes and/or effects of the physiological processes accompanying the decline including the differential expression of sub-cellular biomarkers indicative of various diseases. The current study is a post-hoc analysis of the expression of trophectoderm RNA data derived from a previous high throughput study. Its main aim is to determine the characteristics and potential functionalities that characterize long non-coding RNAs. As reported previously, a maternal age-related component is potentially implicated in implantation success. Trophectoderm samples representing the full range of maternal reproductive ages were considered in relation to embryonic implantation potential, trophectoderm transcriptome dynamics and reproductive maternal age. The long non-coding RNA (lncRNA) biomarkers identified here are consistent with the activities of embryo-endometrial crosstalk, developmental competency and implantation and share common characteristics with markers of neoplasia/cancer invasion. Corresponding genes for expressed lncRNAs were more active in the blastocysts of younger women are associated with metabolic pathways including cholesterol biosynthesis and steroidogenesis.


Assuntos
Blastocisto , Implantação do Embrião , Humanos , Feminino , Idade Materna , Blastocisto/fisiologia , Implantação do Embrião/genética , Embrião de Mamíferos , Endométrio/metabolismo
10.
J R Soc Interface ; 20(199): 20220682, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36751925

RESUMO

Cryopreservation of biological matter in microlitre scale volumes of liquid would be useful for a range of applications. At present, it is challenging because small volumes of water tend to supercool, and deep supercooling is known to lead to poor post-thaw cell viability. Here, we show that a mineral ice nucleator can almost eliminate supercooling in 100 µl liquid volumes during cryopreservation. This strategy of eliminating supercooling greatly enhances cell viability relative to cryopreservation protocols with uncontrolled ice nucleation. Using infrared thermography, we demonstrate a direct relationship between the extent of supercooling and post-thaw cell viability. Using a mineral nucleator delivery system, we open the door to the routine cryopreservation of mammalian cells in multiwell plates for applications such as high throughput toxicology testing of pharmaceutical products and regenerative medicine.


Assuntos
Criopreservação , Gelo , Animais , Congelamento , Criopreservação/métodos , Água , Mentol , Mamíferos
11.
Biol Reprod ; 86(5): 165, 1-12, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22378762

RESUMO

Amino acid profiling has been used to distinguish between human embryos of differing developmental competence. We sought to determine whether amino acid profiling could be used to distinguish between metaphase II (MII) bovine oocytes with different developmental capabilities in vitro. Amino acid turnover was assayed during the final 6 h of in vitro maturation prior to oocytes undergoing individual fertilization in vitro. Following insemination, zygotes were immobilized in groups of 16 on the base of a Petri dish using Cell-Tak tissue adhesive to enable the developmental progress of each to be tracked to the blastocyst stage. Spent droplets of in vitro maturation medium were analyzed by high performance liquid chromatography, which revealed glutamine, arginine, and asparagine were depleted in the greatest quantities. Incompetent MII oocytes that failed to cleave by 72 h postfertilization depleted significantly more glutamine from (P = 0.0006) and released more alanine (P = 0.0001) into the medium than oocytes that cleaved. When cutoff values were selected for the turnover of alanine, arginine, glutamine, leucine, and tryptophan and modeled to predict fertilization and cleavage potential, oocytes that did not exceed the cutoff values for ≥2 of these key amino acids were more likely to cleave. The sensitivity, specificity, accuracy, and positive predictive value of this model were 60.5%, 76.8%, 63.5%, and 92.0%, respectively. Significant differences (P ≤ 0.015) in the consumption/production of alanine and glutamine were also observed when comparing uncleaved oocytes with those that produced blastocysts. The data show that noninvasive amino acid profiling can be used to measure oocyte developmental competence.


Assuntos
Aminoácidos/metabolismo , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Animais , Blastocisto/metabolismo , Bovinos , Desenvolvimento Embrionário/fisiologia , Feminino , Fertilização in vitro/métodos , Valor Preditivo dos Testes
12.
Reproduction ; 144(2): 195-207, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22718856

RESUMO

The response of Graafian follicles to pre-ovulatory surge levels of FSH and LH in vivo triggers the terminal differentiation of granulosa cells and oocyte maturation. In polyovular species, the LH-driven signalling uses the epidermal growth factor (EGF)-like ligands AREG, EREG and BTC to promote oocyte maturation and cumulus expansion. This experimental series used a physiologically relevant ovine in vitro maturation (IVM) system to evaluate the impact of exposure to pre-ovulatory levels (100  ng/ml) of LH and FSH on ovine cumulus cell expression of EGF-like ligands in vitro. The serum-free sheep IVM system supported high levels (91.4%) of gonadotrophin-induced maturation of cumulus-enclosed oocytes and embryo development to the blastocyst stage (34.5%). Results were equivalent to a serum-based IVM system (85.1% IVM, 25.8% blastocyst rate; P>0.05) but were significantly different (P<0.05) to serum-free medium without gonadotrophins (69.5% IVM; 8.0% blastocyst rate). Ovine BTC was cloned and sequenced. Gonadotrophin-induced AREG, EREG, BTC and EGFR expressions were quantified in cumulus and mural granulosa cells during IVM. A rapid induction of AREG expression was apparent in both cell types within 30  min of gonadotrophin exposure in vitro. LHCGR (LHR) was detected in mural cells and FSHR in both cumulus and mural granulosa cells. The data confirm the involvement of AREG and EGFR during gonadotrophin-induced cumulus expansion, oocyte maturation and the acquisition of developmental competence by sheep oocytes matured in vitro.


Assuntos
Células do Cúmulo/efeitos dos fármacos , Hormônio Foliculoestimulante/farmacologia , Células da Granulosa/efeitos dos fármacos , Técnicas de Maturação in Vitro de Oócitos , Hormônio Luteinizante/farmacologia , Oócitos/efeitos dos fármacos , Animais , Sequência de Bases , Meios de Cultura Livres de Soro/farmacologia , Células do Cúmulo/citologia , Células do Cúmulo/metabolismo , Células do Cúmulo/fisiologia , Relação Dose-Resposta a Droga , Feminino , Hormônio Foliculoestimulante/metabolismo , Fase Folicular/metabolismo , Gonadotropinas/farmacologia , Células da Granulosa/citologia , Células da Granulosa/metabolismo , Células da Granulosa/fisiologia , Técnicas de Maturação in Vitro de Oócitos/métodos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Hormônio Luteinizante/metabolismo , Dados de Sequência Molecular , Oócitos/citologia , Oócitos/metabolismo , Oócitos/fisiologia , Receptores do FSH/genética , Receptores do FSH/metabolismo , Homologia de Sequência do Ácido Nucleico , Ovinos/genética , Ovinos/metabolismo , Ovinos/fisiologia , Estudos de Validação como Assunto
13.
Annu Rev Anim Biosci ; 10: 281-301, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34843385

RESUMO

Considerable progress has been made with the development of culture systems for the in vitro growth and maturation (IVGM) of oocytes from the earliest-staged primordial follicles and from the more advanced secondary follicles in rodents, ruminants, nonhuman primates, and humans. Successful oocyte production in vitro depends on the development of a dynamic culture strategy that replicates the follicular microenvironment required for oocyte activation and to support oocyte growth and maturation in vivo while enabling the coordinated and timely acquisition of oocyte developmental competence. Significant heterogeneity exists between the culture protocols used for different stages of follicle development and for different species. To date, the fertile potential of IVGM oocytes derived from primordial follicles has been realized only in mice. Although many technical challenges remain, significant advances have been made, and there is an increasing consensus that complete IVGM will require a dynamic, multiphase culture approach. The production of healthy offspring from in vitro-produced oocytes in a secondary large animal species is a vital next step before IVGM can be tested for therapeutic use in humans.


Assuntos
Oócitos , Folículo Ovariano , Animais , Feminino , Fertilidade , Camundongos , Oogênese/fisiologia , Folículo Ovariano/fisiologia
14.
Arch Dis Child ; 107(3): 265-270, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34544694

RESUMO

OBJECTIVE: To assess the utilisation of and funding structure for fertility preservation for children diagnosed with cancer in the UK. DESIGN: Survey of paediatric oncologists/haematologists. Questionnaires were sent electronically with reminder notifications to non-responders. SETTING: UK Paediatric Oncology Principal Treatment Centres (PTCs). PARTICIPANTS: Paediatric oncologists/haematologists with an interest in the effects of treatment on fertility representing the 20 PTCs across the UK. MAIN OUTCOME MEASURES: Referral practices, sources and length of funding for storage of gametes or gonadal tissue for children diagnosed with cancer in the preceding 12 months. RESULTS: Responses were received from 18 PTCs (90%) with responses to 98.3% of questions. All centres had referred patients for fertility preservation: ovarian tissue collection/storage 100% (n=18 centres), sperm banking 100% (n=17; one centre was excluded due to the age range of their patients), testicular tissue storage 83% (n=15), mature oocyte collection 35% (n=6; one centre was excluded due to the age range of their patients). All centres with knowledge of their funding source reported sperm cryopreservation was NHS funded. Only 60% (n=9) centres reported the same for mature oocyte storage. Of the centres aware of their funding source, half reported that ovarian and testicular tissue storage was funded by charitable sources; this increased in England compared with the rest of the UK. CONCLUSIONS: Inequality exists in provision of fertility preservation for children with cancer across the UK. There is lack of formalised government funding to support international guidelines, with resultant geographical variation in care. Centralised funding of fertility preservation for children and young adults is needed alongside establishment of a national advisory panel to support all PTCs.


Assuntos
Preservação da Fertilidade/estatística & dados numéricos , Neoplasias/epidemiologia , Adolescente , Criança , Estudos Transversais , Criopreservação/métodos , Feminino , Disparidades em Assistência à Saúde , Humanos , Masculino , Pediatria/métodos , Inquéritos e Questionários , Reino Unido/epidemiologia
15.
Cells ; 10(5)2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068340

RESUMO

Here we report the use of a microfluidic system to assess the differential metabolomics of murine embryos cultured with endometrial cells-conditioned media (CM). Groups of 10, 1-cell murine B6C3F1 × B6D2F1 embryos were cultured in the microfluidic device. To produce CM, mouse uterine epithelial cells were cultured in potassium simplex optimized medium (KSOM) for 24 h. Media samples were collected from devices after 5 days of culture with KSOM (control) and CM, analyzed by reverse phase liquid chromatography and untargeted positive ion mode mass spectrometry analysis. Blastocyst rates were significantly higher (p < 0.05) in CM (71.8%) compared to control media (54.6%). We observed significant upregulation of 341 compounds and downregulation of 214 compounds in spent media from CM devices when compared to control. Out of these, 353 compounds were identified showing a significant increased abundance of metabolites involved in key metabolic pathways (e.g., arginine, proline and pyrimidine metabolism) in the CM group, suggesting a beneficial effect of CM on embryo development. The metabolomic study carried out in a microfluidic environment confirms our hypothesis on the potential of uterine epithelial cells to enhance blastocyst development. Further investigations are required to highlight specific pathways involved in embryo development and implantation.


Assuntos
Blastocisto/metabolismo , Técnicas de Cultura Embrionária/instrumentação , Células Epiteliais/metabolismo , Dispositivos Lab-On-A-Chip , Metaboloma , Metabolômica , Técnicas Analíticas Microfluídicas/instrumentação , Comunicação Parácrina , Útero/metabolismo , Animais , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Desenvolvimento Embrionário , Feminino , Espectrometria de Massas , Camundongos , Transdução de Sinais , Útero/citologia
16.
Sci Rep ; 11(1): 21245, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711892

RESUMO

We report a novel method to profile intrcellular oxygen concentration (icO2) during in vitro mammalian oocyte and preimplantation embryo development using a commercially available multimodal phosphorescent nanosensor (MM2). Abattoir-derived bovine oocytes and embryos were incubated with MM2 in vitro. A series of inhibitors were applied during live-cell multiphoton imaging to record changes in icO2 associated with mitochondrial processes. The uncoupler carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) uncouples mitochondrial oxygen consumption to its maximum, while antimycin inhibits complex III to ablate mitochondrial oxygen consumption. Increasing oxygen consumption was expected to reduce icO2 and decreasing oxygen consumption to increase icO2. Use of these inhibitors quantifies how much oxygen is consumed at basal in comparison to the upper and lower limits of mitochondrial function. icO2 measurements were compared to mitochondrial DNA copy number analysed by qPCR. Antimycin treatment increased icO2 for all stages tested, suggesting significant mitochondrial oxygen consumption at basal. icO2 of oocytes and preimplantation embryos were unaffected by FCCP treatment. Inner cell mass icO2 was lower than trophectoderm, perhaps reflecting limitations of diffusion. Mitochondrial DNA copy numbers were similar between stages in the range 0.9-4 × 106 copies and did not correlate with icO2. These results validate the MM2 probe as a sensitive, non-toxic probe of intracellular oxygen concentration in mammalian oocytes and preimplantation embryos.


Assuntos
Blastocisto/metabolismo , Desenvolvimento Embrionário , Metabolismo Energético , Oócitos/metabolismo , Oxigênio/metabolismo , Animais , Biomarcadores , Blastômeros/metabolismo , Bovinos , Desenvolvimento Embrionário/genética , Feminino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oócitos/citologia , Fosforilação Oxidativa , Gravidez
17.
iScience ; 24(7): 102751, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34278260

RESUMO

Advancing age has a negative impact on female fertility. As implantation rates decline during the normal maternal life course, age-related, embryonic factors are altered and our inability to monitor these factors in an unbiased genome-wide manner in vivo has severely limited our understanding of early human embryo development and implantation. Our high-throughput methodology uses trophectoderm samples representing the full spectrum of maternal reproductive ages with embryo implantation potential examined in relation to trophectoderm transcriptome dynamics and reproductive maternal age. Potential embryo-endometrial interactions were tested using trophectoderm sampled from young women, with the receptive uterine environment representing the most 'fertile' environment for successful embryo implantation. Potential roles for extracellular exosomes, embryonic metabolism and regulation of apoptosis were revealed. These biomarkers are consistent with embryo-endometrial crosstalk/developmental competency, serving as a mediator for successful implantation. Our data opens the door to developing a diagnostic test for predicting implantation success in women undergoing fertility treatment.

18.
Biotechnol Prog ; 37(6): e3194, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34288603

RESUMO

Assisted reproduction technologies for clinical and research purposes rely on a brief in vitro embryo culture which, despite decades of progress, remain suboptimal in comparison to the physiological environment. One promising tool to improve this technique is the development of bespoke microfluidic chambers. Here we present and validate a new microfluidic device in polydimethylsiloxane (PDMS) for the culture of early mouse embryos. Device material and design resulted embryo compatible and elicit minimal stress. Blastocyst formation, hatching, attachment and outgrowth formation on fibronectin-coated devices were similar to traditional microdrop methods. Total blastocyst cell number and allocation to the trophectoderm and inner cell mass lineages were unaffected. The devices were designed for culture of 10-12 embryos. Development rates, mitochondrial polarization and metabolic turnover of key energy substrates glucose, pyruvate and lactate were consistent with groups of 10 embryos in microdrop controls. Increasing group size to 40 embryos per device was associated with increased variation in development rates and altered metabolism. Device culture did not perturb blastocyst gene expression but did elicit changes in embryo metabolome, which can be ascribed to substrate leaching from PDMS and warrant further investigation.


Assuntos
Blastocisto , Dispositivos Lab-On-A-Chip , Metabolômica/métodos , Técnicas de Reprodução Assistida , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Metaboloma/genética , Metaboloma/fisiologia , Camundongos
19.
Mol Hum Reprod ; 16(8): 557-69, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20571076

RESUMO

This study investigated the relationship between human preimplantation embryo metabolism and aneuploidy rates during development in vitro. One hundred and eighty-eight fresh and cryopreserved embryos from 59 patients (33.9 +/- 0.6 years) were cultured for 2-5 days. The turnover of 18 amino acids was measured in spent media by high-performance liquid chromatography. Embryos were either fixed for interphase fluorescent in situ hybridization analysis of chromosomes 13, 18, 19, 21, X or Y, or were assayed for mitochondrial activity. Amino acid turnover was different (P < 0.05) between stage-matched fresh and cryopreserved embryos due to blastomere loss following warming. The proportion of embryos with aneuploid cells increased as cell division progressed from pronucleate- (23%) to late cleavage stages (50-70%). Asparagine, glycine and valine turnover was significantly different between uniformly genetically normal and uniformly abnormal embryos on Days 2-3 of culture. By Days 3-4, the profiles of serine, leucine and lysine differed between uniformly euploid versus aneuploid embryos. Gender significantly (P < 0.05) affected the metabolism of tryptophan, leucine and asparagine by cleavage-stage embryos. Pronucleate zygotes had a significantly higher proportion of active:inactive mitochondria compared with cleavage-stage embryos. Furthermore, mitochondrial activity was correlated (P < 0.05) with altered aspartate and glutamine turnover. These results demonstrate the association between the metabolism, cytogenetic composition and health of human embryos in vitro.


Assuntos
Aminoácidos/metabolismo , Aneuploidia , Desenvolvimento Embrionário/fisiologia , Adulto , Cromatografia Líquida de Alta Pressão , Criopreservação , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Feminino , Humanos , Idade Materna , Gravidez , Fatores Sexuais
20.
Hum Reprod ; 25(9): 2305-15, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20659909

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is associated with metabolic disturbances which include impaired insulin signalling and glucose metabolism in ovarian follicles. The oocyte is metabolically dependent upon its follicle environment during development, but it is unclear whether PCOS or polycystic ovarian (PCO) morphology alone affect oocyte metabolism and energy-demanding processes such as meiosis. METHODS: Immature human oocytes were donated by PCOS (n = 14), PCO (n = 14) and control (n = 46) patients attending the assisted conception programme at Leeds Teaching Hospitals NHS Trust. Oocytes were cultured individually and carbohydrate metabolism was assessed during overnight in vitro maturation (IVM). Meiotic status was assessed and oocyte intracellular nicotinamide adenine dinucleotide phosphate (NAD(P)H) content and mitochondria activity were measured prior to karyotype analysis by multifluor in situ hybridization. RESULTS: Patient aetiology had no significant effect on oocyte maturation potential or incidence of numerical chromosome abnormalities (44%), although PCOS and PCO oocytes were more likely to suffer predivision. Group G chromosomes were most likely to be involved in non-disjunction and predivision. PCOS was associated with increased glucose consumption (2.06 +/- 0.43 and 0.54 +/- 0.12 pmol/h for PCOS and control oocytes, respectively) and increased pyruvate consumption (18.4 +/- 1.2 and 13.9 +/- 0.9 pmol/h for PCOS and control oocytes, respectively) during IVM. Prior prescription of metformin significantly attenuated pyruvate consumption by maturing oocytes (8.5 +/- 1.8 pmol/h) from PCOS patients. Oocytes from PCO patients had intermediate metabolism profiles. Higher pyruvate turnover was associated with abnormal oocyte karyotypes (13.4 +/- 1.9 and 19.9 +/- 2.1 pmol/h for normal versus abnormal oocytes, respectively). Similarly, oocyte NAD(P)H content was 1.35-fold higher in abnormal oocytes. CONCLUSIONS: The chromosomal constitution of in vitro matured oocytes from PCOS is similar to that of controls, but aspects of oocyte metabolism are perturbed by PCOS. Elevated pyruvate consumption was associated with abnormal oocyte karyotype.


Assuntos
Aberrações Cromossômicas/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Indução da Ovulação/efeitos adversos , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Adulto , Metabolismo dos Carboidratos/efeitos dos fármacos , Metabolismo dos Carboidratos/genética , Diferenciação Celular , Células Cultivadas , Segregação de Cromossomos/efeitos dos fármacos , Cromossomos Humanos 21-22 e Y/efeitos dos fármacos , Feminino , Humanos , Hipoglicemiantes/farmacologia , Meiose/efeitos dos fármacos , Metformina/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NAD/metabolismo , NADP/metabolismo , Cistos Ovarianos/genética , Cistos Ovarianos/metabolismo , Cariotipagem Espectral , Injeções de Esperma Intracitoplásmicas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA