Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sci Adv ; 9(30): eadg2829, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37494451

RESUMO

Cell death coordinates repair programs following pathogen attack and tissue injury. However, aberrant cell death can interfere with such programs and cause organ failure. Cellular FLICE-like inhibitory protein (cFLIP) is a crucial regulator of cell death and a substrate of Caspase-8. However, the physiological role of cFLIP cleavage by Caspase-8 remains elusive. Here, we found an essential role for cFLIP cleavage in restraining cell death in different pathophysiological scenarios. Mice expressing a cleavage-resistant cFLIP mutant, CflipD377A, exhibited increased sensitivity to severe acute respiratory syndrome coronavirus (SARS-CoV)-induced lethality, impaired skin wound healing, and increased tissue damage caused by Sharpin deficiency. In vitro, abrogation of cFLIP cleavage sensitizes cells to tumor necrosis factor(TNF)-induced necroptosis and apoptosis by favoring complex-II formation. Mechanistically, the cell death-sensitizing effect of the D377A mutation depends on glutamine-469. These results reveal a crucial role for cFLIP cleavage in controlling the amplitude of cell death responses occurring upon tissue stress to ensure the execution of repair programs.


Assuntos
Apoptose , Viroses , Animais , Camundongos , Caspase 8/genética , Pele/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
EMBO Mol Med ; 6(5): 624-39, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24648500

RESUMO

In the normal quiescent vasculature, only 0.01% of endothelial cells (ECs) are proliferating. However, this proportion increases dramatically following the angiogenic switch during tumor growth or wound healing. Recent evidence suggests that this angiogenic switch is accompanied by a metabolic switch. Here, we show that proliferating ECs increasingly depend on mitochondrial oxidative phosphorylation (OxPhos) for their increased energy demand. Under growth conditions, ECs consume three times more oxygen than quiescent ECs and work close to their respiratory limit. The increased utilization of the proton motif force leads to a reduced mitochondrial membrane potential in proliferating ECs and sensitizes to mitochondrial uncoupling. The benzoquinone embelin is a weak mitochondrial uncoupler that prevents neoangiogenesis during tumor growth and wound healing by exhausting the low respiratory reserve of proliferating ECs without adversely affecting quiescent ECs. We demonstrate that this can be exploited therapeutically by attenuating tumor growth in syngenic and xenograft mouse models. This novel metabolic targeting approach might be clinically valuable in controlling pathological neoangiogenesis while sparing normal vasculature and complementing cytostatic drugs in cancer treatment.


Assuntos
Benzoquinonas/farmacologia , Respiração Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neovascularização Patológica , Neovascularização Fisiológica/efeitos dos fármacos , Desacopladores/farmacologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Camundongos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Desacopladores/uso terapêutico , Cicatrização/efeitos dos fármacos
3.
Am J Pathol ; 168(2): 670-84, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16436680

RESUMO

Plasmin-catalyzed cleavage of the vascular endothelial growth factor (VEGF)-A isoform VEGF165 results in loss of its carboxyl-terminal heparin-binding domain and significant loss in its bioactivity. Little is known about the in vivo significance of this process. To investigate the biological relevance of the protease sensitivity of VEGF165 in wound healing we assessed the activity of a VEGF165 mutant resistant to plasmin proteolysis (VEGF165(A111P)) in a genetic mouse model of impaired wound healing (db/db mouse). In the present study we demonstrate that in this mouse model plasmin activity is increased at the wound site. The stability of the mutant VEGF165 was substantially increased in wound tissue lysates in comparison to wild-type VEGF165, thus indicating a prolonged activity of the plasmin-resistant VEGF165 mutant. The db/db delayed healing phenotype could be reversed by topical application of wild-type VEGF165 or VEGF165(A111P). However, resistance of VEGF165 to plasmin cleavage resulted in the increased stability of vascular structures during the late phase of healing due to increased recruitment of perivascular cells and delayed and reduced endothelial cell apoptosis. Our data provide the first indication that plasmin-catalyzed cleavage regulates VEGF165-mediated angiogenesis in vivo. Inactivation of the plasmin cleavage site Arg110/Ala111 may preserve the biological function of VEGF165 in therapeutic angiogenesis under conditions in which proteases are highly active, such as wound repair and inflammation.


Assuntos
Diabetes Mellitus Tipo 2 , Fibrinolisina/farmacologia , Fibrinolíticos/farmacologia , Neovascularização Fisiológica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização , Animais , Apoptose , Células COS , Células Cultivadas , Chlorocebus aethiops , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutagênese Sítio-Dirigida , Fenótipo , Veias Umbilicais/citologia , Veias Umbilicais/efeitos dos fármacos , Veias Umbilicais/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA