Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Astrobiology ; 3(1): 99-118, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12804368

RESUMO

We use one-dimensional (1D) atmospheric models coupled to a sulfate aerosol model to investigate climate forcing and short-term response to stratospheric sulfate aerosols produced by the reaction of S-bearing gases and water vapor released in the Chicxulub impact event. A 1D radiation model is used to assess the climate forcing due to the impact-related loading of S-bearing gases. The model suggests that a climate forcing 100 times larger than that from the Pinatubo volcanic eruption is associated with the Chicxulub impact event for at least 2 years after the impact. In particular, we find a saturation effect in the forcing, that is, there is no significant difference in the maximum forcing between the highest (approximately 300 Gt) and lowest (approximately 30 Gt) estimated stratospheric S-loading from the Chicxulub impact. However, higher S-loads increase the overall duration of the forcing by several months. We use a single column model for a preliminary investigation of the short-term climate response to the impact-related production of sulfate aerosols (the lack of horizontal feedbacks limits the usefulness of the single column model to the first few days after the impact). Compared with the present steady-state climate, the introduction of large amounts of sulfate aerosols in the stratosphere results in a significant cooling of the Earth's surface. A long-term climate response can only be investigated with the use of a three-dimensional atmospheric model, which allows for the atmospheric circulation to adjust to the perturbation. Overall, although the climate perturbation to the forcing appears to be relatively large, the geologic record shows no sign of a significant long-term climatic shift across the K/T boundary, which is indicative of a fast post-impact climatic recovery.


Assuntos
Clima , Sedimentos Geológicos/química , Planeta Terra , Meio Ambiente , História Antiga , Meteoroides , México , Modelos Teóricos
2.
Science ; 327(5970): 1214-8, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20203042

RESUMO

The Cretaceous-Paleogene boundary approximately 65.5 million years ago marks one of the three largest mass extinctions in the past 500 million years. The extinction event coincided with a large asteroid impact at Chicxulub, Mexico, and occurred within the time of Deccan flood basalt volcanism in India. Here, we synthesize records of the global stratigraphy across this boundary to assess the proposed causes of the mass extinction. Notably, a single ejecta-rich deposit compositionally linked to the Chicxulub impact is globally distributed at the Cretaceous-Paleogene boundary. The temporal match between the ejecta layer and the onset of the extinctions and the agreement of ecological patterns in the fossil record with modeled environmental perturbations (for example, darkness and cooling) lead us to conclude that the Chicxulub impact triggered the mass extinction.


Assuntos
Extinção Biológica , Fósseis , Planetas Menores , Animais , Sedimentos Geológicos , México
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA