Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Toxicol ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769170

RESUMO

To improve the mechanistic screening of reproductive toxicants in  chemical-risk assessment and drug development, we have developed a three-dimensional (3D) heterogenous testicular co-culture model from neonatal mice. Di-n-butyl phthalate (DBP), an environmental contaminant that can affect reproductive health negatively, was used as a model compound to illustrate the utility of the in vitro model. The cells were treated with DBP (1 nM to 100 µM) for 7 days. Automated high-content imaging confirmed the presence of cell-specific markers of Leydig cells (CYP11A1 +), Sertoli cells (SOX9 +), and germ cells (DAZL +). Steroidogenic activity of Leydig cells was demonstrated by analyzing testosterone levels in the culture medium. DBP induced a concentration-dependent reduction in testosterone levels and decreased the number of Leydig cells compared to vehicle control. The levels of steroidogenic regulator StAR and the steroidogenic enzyme CYP11A1 were decreased already at the lowest DBP concentration (1 nM), demonstrating upstream effects in the testosterone biosynthesis pathway. Furthermore, exposure to 10 nM DBP decreased the levels of the germ cell-specific RNA binding protein DAZL, central for the spermatogenesis. The 3D model also captured the development of the Sertoli cell junction proteins, N-cadherin and Zonula occludens protein 1 (ZO-1), critical for the blood-testis barrier. However, DBP exposure did not significantly alter the cadherin and ZO-1 levels. Altogether, this 3D in vitro system models testicular cellular signaling and function, making it a powerful tool for mechanistic screening of developmental testicular toxicity. This can open a new avenue for high throughput screening of chemically-induced reproductive toxicity during sensitive developmental phases.

2.
Ecotoxicol Environ Saf ; 262: 115321, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37549549

RESUMO

Di-n-butyl phthalate (DBP) is a ubiquitous environmental contaminant linked with various adverse health effects, including immune system dysfunction. Gut microbial dysbiosis can contribute to a wide range of pathogenesis, particularly immune disease. Here, we investigated the impact of DBP on the gut microbiome and examined correlations with immune system changes after five weeks oral exposure (10 or 100 mg/kg/day) in adult male mice. The fecal microbiome composition was characterized using 16S rRNA sequencing. DBP-treated mice displayed a significantly distinct microbial community composition, indicated by Bray-Curtis distance. Numerous amplicon sequence variants (ASVs) at the genus level were altered. Compared to the vehicle control group, the 10 mg/kg/day DBP group had 63 more abundant and 65 less abundant ASVs, while 60 ASVs were increased and 76 ASVs were decreased in the 100 mg/kg/day DBP group. Both DBP treatment groups showed higher abundances of ASVs assigned to Desulfovibrio (Proteobacteria phylum) and Enterorhabdus genera, while ASVs belonging to Parabacteroides, Lachnospiraceae UCG-006 and Lachnoclostridium were less common compared to the control group. Interestingly, an ASV belonging to Rumniniclostridium 6, which was less abundant in DBP-treated mice, demonstrated a negative correlation with the increased number of non-classical monocytes observed in the blood of DBP-treated animals. In addition, an ASV from Lachnospiraceae UCG-001, which was more abundant in the DBP-treated animals, showed a positive correlation with the non-classical monocyte increase. This study shows that DBP exposure greatly modifies the gut bacterial microbiome and indicates a potential contribution of microbial dysbiosis to DBP-induced immune system impairment, illustrating the importance of investigating how interactions between exposome components can affect health.

3.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955852

RESUMO

Studies indicate that phthalates are endocrine disruptors affecting reproductive health. One of the most commonly used phthalates, di-n-butyl phthalate (DBP), has been linked with adverse reproductive health outcomes in men, but the mechanisms behind these effects are still poorly understood. Here, adult male mice were orally exposed to DBP (10 or 100 mg/kg/day) for five weeks, and the testis and adrenal glands were collected one week after the last dose, to examine more persistent effects. Quantification of testosterone, androstenedione, progesterone and corticosterone concentrations by liquid chromatography-mass spectrometry showed that testicular testosterone was significantly decreased in both DBP treatment groups, whereas the other steroids were not significantly altered. Western blot analysis of testis revealed that DBP exposure increased the levels of the steroidogenic enzymes CYP11A1, HSD3ß2, and CYP17A1, the oxidative stress marker nitrotyrosine, and the luteinizing hormone receptor (LHR). The analysis further demonstrated increased levels of the germ cell marker DAZL, the Sertoli cell markers vimentin and SOX9, and the Leydig cell marker SULT1E1. Overall, the present work provides more mechanistic understanding of how adult DBP exposure can induce effects on the male reproductive system by affecting several key cells and proteins important for testosterone biosynthesis and spermatogenesis, and for the first time shows that these effects persist at least one week after the last dose. It also demonstrates impairment of testosterone biosynthesis at a lower dose than previously reported.


Assuntos
Dibutilftalato , Testículo , Animais , Dibutilftalato/metabolismo , Humanos , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Espermatogênese , Testículo/metabolismo , Testosterona/metabolismo
5.
Arch Toxicol ; 94(11): 3893-3906, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32700164

RESUMO

Gene-environment interactions are involved in the development of breast cancer, the tumor type that accounts for the majority of the cancer-related deaths among women. Here, we demonstrate that exposure to PFOS (10 µM) and PFOA (100 µM)-two contaminants ubiquitously found in human blood-for 72 h induced breast epithelial cell (MCF-10A cell line) proliferation and alteration of regulatory cell-cycle proteins (cyclin D1, CDK6, p21, p53, p27, ERK 1/2 and p38) that persisted after a multitude of cell divisions. The contaminants also promoted cell migration and invasion by reducing the levels of E-cadherin, occludin and ß-integrin in the unexposed daughter cells. The compounds further induced an increase in global DNA methylation and differentially altered histone modifications, epigenetic mechanisms implicated in tumorigenesis. This mechanistic evidence for PFOS- and PFOA-induced malignant transformation of human breast cells supports a role of these abundant contaminants in the development and progression of breast cancer. Increased knowledge of contaminant-induced effects and their contribution to breast tumorigenesis is important for a better understanding of gene-environment interactions in the etiology of breast cancer.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Neoplasias da Mama/induzido quimicamente , Caprilatos/toxicidade , Carcinogênese/induzido quimicamente , Proteínas de Ciclo Celular/metabolismo , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Fluorocarbonos/toxicidade , Neoplasias da Mama/genética , Carcinogênese/genética , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Feminino , Humanos
6.
Arch Toxicol ; 94(8): 2799-2808, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32435914

RESUMO

Olfactory dysfunction is implicated in neurodegenerative disorders and typically manifests years before other symptoms. The cyanobacterial neurotoxin ß-N-methylamino-L-alanine (BMAA) is suggested as a risk factor for neurodegenerative disease. Detection of BMAA in air filters has increased the concern that aerosolization may lead to human BMAA exposure through the air. The aim of this study was to determine if BMAA targets the olfactory system. Autoradiographic imaging showed a distinct localization of radioactivity in the right olfactory mucosa and bulb following a unilateral intranasal instillation of 3H-BMAA (0.018 µg) in mice, demonstrating a direct transfer of BMAA via the olfactory pathways to the brain circumventing the blood-brain barrier, which was confirmed by liquid scintillation. Treatment of mouse primary olfactory bulb cells with 100 µM BMAA for 24 h caused a disruption of the neurite network, formation of dendritic varicosities and reduced cell viability. The NMDA receptor antagonist MK-801 and the metabotropic glutamate receptor antagonist MCPG protected against the BMAA-induced alterations, demonstrating the importance of glutamatergic mechanisms. The ionotropic non-NMDA receptor antagonist CNQX prevented the BMAA-induced decrease of cell viability in mixed cultures containing both neuronal and glial cells, but not in cultures with neurons only, suggesting a role of neuron-glial interactions and glial AMPA receptors in the BMAA-induced toxicity. The results show that the olfactory region may be a target for BMAA following inhalation exposure. Further studies on the relations between environmental olfactory toxicants and neurodegenerative disorders are warranted.


Assuntos
Diamino Aminoácidos/toxicidade , Toxinas Bacterianas/toxicidade , Cianobactérias/metabolismo , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Bulbo Olfatório/efeitos dos fármacos , Administração Intranasal , Diamino Aminoácidos/administração & dosagem , Diamino Aminoácidos/metabolismo , Animais , Toxinas Bacterianas/administração & dosagem , Toxinas Bacterianas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Toxinas de Cianobactérias , Ácido Glutâmico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Neuroglia/patologia , Crescimento Neuronal/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia , Mucosa Olfatória/metabolismo
7.
J Pineal Res ; 65(1): e12488, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29528516

RESUMO

The environmental neurotoxin ß-N-methylamino-L-alanine (BMAA) is a glutamate receptor agonist that can induce oxidative stress and has been implicated as a possible risk factor for neurodegenerative disease. Detection of BMAA in mussels, crustaceans, and fish illustrates that the sources of human exposure to this toxin are more abundant than previously anticipated. The aim of this study was to determine uptake of BMAA in the pineal gland and subsequent effects on melatonin production in primary pinealocyte cultures and a rat model. Autoradiographic imaging of 10-day-old male rats revealed a high and selective uptake in the pineal gland at 30 minutes to 24 hours after 14 C-L-BMAA administration (0.68 mg/kg). Primary pinealocyte cultures exposed to 0.05-3 mmol/L BMAA showed a 57%-93% decrease in melatonin synthesis in vitro. Both the metabotropic glutamate receptor 3 (mGluR3) antagonist Ly341495 and the protein kinase C (PKC) activator phorbol-12-myristate-13-acetate prevented the decrease in melatonin secretion, suggesting that BMAA inhibits melatonin synthesis by mGluR3 activation and PKC inhibition. Serum analysis revealed a 45% decrease in melatonin concentration in neonatal rats assessed 2 weeks after BMAA administration (460 mg/kg) and confirmed an inhibition of melatonin synthesis in vivo. Given that melatonin is a most important neuroprotective molecule in the brain, the etiology of BMAA-induced neurodegeneration may include mechanisms beyond direct excitotoxicity and oxidative stress.


Assuntos
Diamino Aminoácidos/farmacologia , Melatonina/metabolismo , Aminoácidos/farmacologia , Animais , Toxinas de Cianobactérias , Feminino , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ésteres de Forbol/farmacologia , Glândula Pineal/citologia , Glândula Pineal/metabolismo , Proteína Quinase C/metabolismo , Ratos , Ratos Wistar , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/metabolismo , Xantenos/farmacologia
8.
Arch Toxicol ; 92(2): 705-716, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29063134

RESUMO

Perfluorooctanesulfonic acid (PFOS) is a synthetic fluorosurfactant widely used in the industry and a prominent environmental toxicant. PFOS is persistent, bioaccumulative, and toxic to mammalian species. Growing evidence suggests that PFOS has the potential to interfere with estrogen homeostasis, posing a risk of endocrine-disrupting effects. Recently, concerns about a potential link between PFOS and breast cancer have been raised, but the mechanisms underlying its actions as a potential carcinogen are unknown. By utilizing cell proliferation assays, flow cytometry, immunocytochemistry, and cell migration/invasion assays, we examined the potentially tumorigenic activity of PFOS (100 nM-1 mM) in MCF-10A breast cell line. The results showed that the growth of MCF-10A cells exposed to 1 and 10 µM PFOS was higher compared to that of the control. Mechanistic studies using 10 µM PFOS demonstrated that the compound promotes MCF-10A proliferation through accelerating G0/G1-to-S phase transition of the cell cycle after 24, 48, and 72 h of treatment. In addition, PFOS exposure increased CDK4 and decreased p27, p21, and p53 levels in the cells. Importantly, treatment with 10 µM PFOS for 72 h also stimulated MCF-10A cell migration and invasion, illustrating its capability to induce neoplastic transformation of human breast epithelial cells. Our experimental results suggest that exposure to low levels of PFOS might be a potential risk factor in human breast cancer initiation and development.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Mama/citologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Fluorocarbonos/toxicidade , Neoplasias da Mama/patologia , Linhagem Celular , Sobrevivência Celular , Transformação Celular Neoplásica , Quinase 4 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Células Epiteliais/citologia , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Proteína Supressora de Tumor p53/metabolismo
9.
Arch Toxicol ; 92(5): 1729-1739, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29502166

RESUMO

Despite significant advances in early detection and treatment, breast cancer remains a major cause of morbidity and mortality. Perfluorooctanoic acid (PFOA) is a suspected endocrine disruptor and a common environmental pollutant associated with various diseases including cancer. However, the effects of PFOA and its mechanisms of action on hormone-responsive cells remain unclear. Here, we explored the potential tumorigenic activity of PFOA (100 nM-1 mM) in human breast epithelial cells (MCF-10A). MCF-10A cells exposed to 50 and 100 µM PFOA demonstrated a higher growth rate compared to controls. The compound promoted MCF-10A proliferation by accelerating G0/G1 to S phase transition of the cell cycle. PFOA increased cyclin D1 and CDK4/6 levels, concomitant with a decrease in p27. In contrast to previous studies of perfluorooctane sulfate (PFOS), the estrogen receptor antagonist ICI 182,780 had no effect on PFOA-induced cell proliferation, whereas the PPARα antagonist GW 6471 was able to prevent the MCF-10A proliferation, indicating that the underlying mechanisms involve PPARα-dependent pathways. Interestingly, we also showed that PFOA is able to stimulate cell migration and invasion, demonstrating its potential to induce neoplastic transformation of human breast epithelial cells. These results suggest that more attention should be paid to the roles of PFOA in the development and progression of breast cancer.


Assuntos
Caprilatos/toxicidade , Células Epiteliais/efeitos dos fármacos , Fluorocarbonos/toxicidade , Glândulas Mamárias Humanas/citologia , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/patologia , Caprilatos/administração & dosagem , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ciclina D1/metabolismo , Relação Dose-Resposta a Droga , Disruptores Endócrinos/administração & dosagem , Disruptores Endócrinos/toxicidade , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Fluorocarbonos/administração & dosagem , Humanos , Glândulas Mamárias Humanas/efeitos dos fármacos , Oxazóis/farmacologia , PPAR alfa/antagonistas & inibidores , Receptores de Estrogênio/metabolismo , Tirosina/análogos & derivados , Tirosina/farmacologia
11.
Metab Brain Dis ; 33(3): 693-704, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29288365

RESUMO

Although methylphenidate (MPH) is ubiquitously prescribed to children and adolescents, the consequences of chronic utilization of this psychostimulant are poorly understood. In this study, we investigated the effects of MPH on cytoskeletal homeostasis and lipid content in rat hippocampus. Wistar rats received intraperitoneal injections of MPH (2.0 mg/kg) or saline solution (controls), once a day, from the 15th to the 44th day of age. Results showed that MPH provoked hypophosphorylation of glial fibrillary acidic protein (GFAP) and reduced its immunocontent. Middle and high molecular weight neurofilament subunits (NF-M, NF-H) were hypophosphorylated by MPH on KSP repeat tail domains, while NFL, NFM and NFH immunocontents were not altered. MPH increased protein phosphatase 1 (PP1) and 2A (PP2A) immunocontents. MPH also decreased the total content of ganglioside and phospholipid, as well as the main brain gangliosides (GM1, GD1a, and GD1b) and the major brain phospholipids (sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidylserine). Total cholesterol content was also reduced in the hippocampi of juvenile rats treated with MPH. These results provide evidence that disruptions of cytoskeletal and lipid homeostasis in hippocampus of juvenile rats are triggers by chronic MPH treatment and present a new basis for understanding the effects and consequences associated with chronic use of this psychostimulant during the development of the central nervous system.


Assuntos
Citoesqueleto/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metilfenidato/farmacologia , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Lipídeos , Masculino , Ratos Wistar
12.
Biochim Biophys Acta ; 1863(12): 3001-3014, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27663072

RESUMO

QUIN is a glutamate agonist playing a role in the misregulation of the cytoskeleton, which is associated with neurodegeneration in rats. In this study, we focused on microglial activation, FGF2/Erk signaling, gap junctions (GJs), inflammatory parameters and redox imbalance acting on cytoskeletal dynamics of the in QUIN-treated neural cells of rat striatum. FGF-2/Erk signaling was not altered in QUIN-treated primary astrocytes or neurons, however cytoskeleton was disrupted. In co-cultured astrocytes and neurons, QUIN-activated FGF2/Erk signaling prevented the cytoskeleton from remodeling. In mixed cultures (astrocyte, neuron, microglia), QUIN-induced FGF-2 increased level failed to activate Erk and promoted cytoskeletal destabilization. The effects of QUIN in mixed cultures involved redox imbalance upstream of Erk activation. Decreased connexin 43 (Cx43) immunocontent and functional GJs, was also coincident with disruption of the cytoskeleton in primary astrocytes and mixed cultures. We postulate that in interacting astrocytes and neurons the cytoskeleton is preserved against the insult of QUIN by activation of FGF-2/Erk signaling and proper cell-cell interaction through GJs. In mixed cultures, the FGF-2/Erk signaling is blocked by the redox imbalance associated with microglial activation and disturbed cell communication, disrupting the cytoskeleton. Thus, QUIN signal activates differential mechanisms that could stabilize or destabilize the cytoskeleton of striatal astrocytes and neurons in culture, and glial cells play a pivotal role in these responses preserving or disrupting a combination of signaling pathways and cell-cell interactions. Taken together, our findings shed light into the complex role of the active interaction of astrocytes, neurons and microglia in the neurotoxicity of QUIN.


Assuntos
Astrócitos/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/toxicidade , Microglia/efeitos dos fármacos , Ácido Quinolínico/toxicidade , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Comunicação Celular/efeitos dos fármacos , Técnicas de Cocultura , Conexina 43/genética , Conexina 43/metabolismo , Corpo Estriado/citologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Junções Comunicantes/ultraestrutura , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Microglia/citologia , Microglia/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxirredução , Gravidez , Cultura Primária de Células , Ratos , Ratos Wistar
13.
Biochim Biophys Acta ; 1860(11 Pt A): 2510-2520, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27475002

RESUMO

BACKGROUND: Diphenylditelluride (PhTe)2 is a potent neurotoxin disrupting the homeostasis of the cytoskeleton. METHODS: Cultured astrocytes and neurons were incubated with (PhTe)2, receptor antagonists and enzyme inhibitors followed by measurement of the incorporation of [32P]orthophosphate into intermediate filaments (IFs). RESULTS: (PhTe)2 caused hyperphosphorylation of glial fibrillary acidic protein (GFAP), vimentin and neurofilament subunits (NFL, NFM and NFH) from primary astrocytes and neurons, respectively. These mechanisms were mediated by N-methyl-d-aspartate (NMDA) receptors, L-type voltage-dependent calcium channels (L-VDCCs) as well as metabotropic glutamate receptors upstream of phospholipase C (PLC). Upregulated Ca(2+) influx activated protein kinase A (PKA) and protein kinase C (PKC) in astrocytes causing hyperphosphorylation of GFAP and vimentin. Hyperphosphorylated (IF) together with RhoA-activated stress fiber formation, disrupted the cytoskeleton leading to altered cell morphology. In neurons, the high intracellular Ca(2+) levels activated the MAPKs, Erk and p38MAPK, beyond PKA and PKC, provoking hyperphosphorylation of NFM, NFH and NFL. CONCLUSIONS: Our findings support that intracellular Ca(2+) is one of the crucial signals that modulate the action of (PhTe)2 in isolated cortical astrocytes and neurons modulating the response of the cytoskeleton against the insult. GENERAL SIGNIFICANCE: Cytoskeletal misregulation is associated with neurodegeneration. This compound could be a valuable tool to induce molecular changes similar to those found in different pathologies of the brain.


Assuntos
Citoesqueleto de Actina/metabolismo , Astrócitos/efeitos dos fármacos , Derivados de Benzeno/farmacologia , Sinalização do Cálcio , Neurônios/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Animais , Astrócitos/metabolismo , Derivados de Benzeno/toxicidade , Células Cultivadas , Neurônios/metabolismo , Compostos Organometálicos/toxicidade , Ratos , Ratos Wistar
14.
J Neurosci Res ; 93(2): 268-84, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25306914

RESUMO

Quinolinic acid (QUIN) is an endogenous metabolite of the kynurenine pathway involved in several neurological disorders. Among the several mechanisms involved in QUIN-mediated toxicity, disruption of the cytoskeleton has been demonstrated in striatally injected rats and in striatal slices. The present work searched for the actions of QUIN in primary striatal neurons. Neurons exposed to 10 µM QUIN presented hyperphosphorylated neurofilament (NF) subunits (NFL, NFM, and NFH). Hyperphosphorylation was abrogated in the presence of protein kinase A and protein kinase C inhibitors H89 (20 µM) and staurosporine (10 nM), respectively, as well as by specific antagonists to N-methyl-D-aspartate (50 µM DL-AP5) and metabotropic glutamate receptor 1 (100 µM MPEP). Also, intra- and extracellular Ca(2+) chelators (10 µM BAPTA-AM and 1 mM EGTA, respectively) and Ca(2+) influx through L-type voltage-dependent Ca(2+) channel (10 µM verapamil) are implicated in QUIN-mediated effects. Cells immunostained for the neuronal markers ßIII-tubulin and microtubule-associated protein 2 showed altered neurite/neuron ratios and neurite outgrowth. NF hyperphosphorylation and morphological alterations were totally prevented by conditioned medium from QUIN-treated astrocytes. Cocultured astrocytes and neurons interacted with one another reciprocally, protecting them against QUIN injury. Cocultured cells preserved their cytoskeletal organization and cell morphology together with unaltered activity of the phosphorylating system associated with the cytoskeleton. This article describes cytoskeletal disruption as one of the most relevant actions of QUIN toxicity in striatal neurons in culture with soluble factors secreted by astrocytes, with neuron-astrocyte interaction playing a role in neuroprotection.


Assuntos
Astrócitos/fisiologia , Comunicação Celular/fisiologia , Corpo Estriado/citologia , Citoesqueleto/metabolismo , Homeostase/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ácido Quinolínico/farmacologia , Animais , Animais Recém-Nascidos , Astrócitos/química , Comunicação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Quelantes/farmacologia , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Relação Dose-Resposta a Droga , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Fosforilação/efeitos dos fármacos , Gravidez , Ratos , Ratos Wistar , Valina/análogos & derivados , Valina/farmacologia
15.
Exp Cell Res ; 322(2): 313-23, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24583400

RESUMO

Quinolinic acid (QUIN) is a glutamate agonist which markedly enhances the vulnerability of neural cells to excitotoxicity. QUIN is produced from the amino acid tryptophan through the kynurenine pathway (KP). Dysregulation of this pathway is associated with neurodegenerative conditions. In this study we treated striatal astrocytes in culture with QUIN and assayed the endogenous phosphorylating system associated with glial fibrillary acidic protein (GFAP) and vimentin as well as cytoskeletal remodeling. After 24h incubation with 100 µM QUIN, cells were exposed to (32)P-orthophosphate and/or protein kinase A (PKA), protein kinase dependent of Ca(2+)/calmodulin II (PKCaMII) or protein kinase C (PKC) inhibitors, H89 (20 µM), KN93 (10 µM) and staurosporin (10nM), respectively. Results showed that hyperphosphorylation was abrogated by PKA and PKC inhibitors but not by the PKCaMII inhibitor. The specific antagonists to ionotropic NMDA and non-NMDA (50 µM DL-AP5 and CNQX, respectively) glutamate receptors as well as to metabotropic glutamate receptor (mGLUR; 50 µM MCPG), mGLUR1 (100 µM MPEP) and mGLUR5 (10 µM 4C3HPG) prevented the hyperphosphorylation provoked by QUIN. Also, intra and extracellular Ca(2+) quelators (1mM EGTA; 10 µM BAPTA-AM, respectively) prevented QUIN-mediated effect, while Ca(2+) influx through voltage-dependent Ca(2+) channel type L (L-VDCC) (blocker: 10 µM verapamil) is not implicated in this effect. Morphological analysis showed dramatically altered actin cytoskeleton with concomitant change of morphology to fusiform and/or flattened cells with retracted cytoplasm and disruption of the GFAP meshwork, supporting misregulation of actin cytoskeleton. Both hyperphosphorylation and cytoskeletal remodeling were reversed 24h after QUIN removal. Astrocytes are highly plastic cells and the vulnerability of astrocyte cytoskeleton may have important implications for understanding the neurotoxicity of QUIN in neurodegenerative disorders.


Assuntos
Citoesqueleto de Actina/efeitos dos fármacos , Astrócitos/citologia , Corpo Estriado/citologia , Ácido Quinolínico/farmacologia , Citoesqueleto de Actina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Western Blotting , Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Glutamatos/metabolismo , Técnicas Imunoenzimáticas , Fosforilação/efeitos dos fármacos , Gravidez , Ratos , Ratos Wistar , Vimentina/metabolismo
16.
Biochim Biophys Acta ; 1823(10): 1708-19, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22743040

RESUMO

The involvement of calcium-mediated signaling pathways in the mechanism of action of 1α,25-dihydroxyvitamin D(3) (1,25D) is currently demonstrated. In this study we found that 1,25D induces nongenomic effects mediated by membrane vitamin D receptor (VDRm) by modulating intermediate filament (IF) phosphorylation and calcium uptake through L-type voltage-dependent calcium channels (L-VDCC) in cerebral cortex of 10 day-old rats. Results showed that the mechanism of action of 1,25D involves intra- and extracellular calcium levels, as well as the modulation of chloride and potassium channels. The effects of L-VDCCs on membrane voltage occur over a broad potential range and could involve depolarizing or hyperpolarizing coupling modes, supporting a cross-talk among Ca(2+) uptake and potassium and chloride channels. Also, the Na(+)/K(+)-ATPase inactivation by ouabain mimicked the 1,25D action on (45)Ca(2+) uptake. The Na(+)/K(+)-ATPase inhibition observed herein might lead to intracellular Na(+) accumulation with subsequent L-VDCC opening and consequently increased (45)Ca(2+) (calcium, isotope of mass 45) uptake. Moreover, the 1,25D effect is dependent on the activation of the following protein kinases: cAMP-dependent protein kinase (PKA), Ca(2+)/calmodulin-dependent protein kinase (PKCaMII), phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase p38 (p38(MAPK)). The modulation of calcium entry into neural cells by the 1,25D we are highlighting, might take a role in the regulation of a plethora of intracellular processes. Considering that vitamin D deficiency can lead to brain illness, 1,25D may be a possible candidate to be used, at least as an adjuvant, in the pharmacological therapy of neuropathological conditions.


Assuntos
Envelhecimento/metabolismo , Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Córtex Cerebral/metabolismo , Filamentos Intermediários/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Vitamina D/análogos & derivados , Envelhecimento/efeitos dos fármacos , Animais , Antígenos Nucleares/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Córtex Cerebral/efeitos dos fármacos , Canais de Cloreto/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Canais de Potássio/metabolismo , Proteína Quinase C/metabolismo , Ratos , Receptores de Calcitriol/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Vitamina D/farmacologia
17.
Mol Genet Metab ; 109(2): 144-53, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23611578

RESUMO

3-Hydroxy-3-methylglutaryl-CoA lyase (HL) deficiency is a genetic disorder biochemically characterized by predominant accumulation of 3-hydroxy-3-methylglutaric (HMG) and 3-methylglutaric (MGA) acids in tissues and biological fluids of affected individuals. Clinically, the patients present neurological symptoms and basal ganglia injury, whose pathomechanisms are partially understood. In the present study, we investigated the ex vivo effects of intrastriatal administration of HMG and MGA on important parameters of oxidative stress in striatum of developing rats. Our results demonstrate that HMG and MGA induce lipid and protein oxidative damage. HMG and MGA also increased 2',7'-dichlorofluorescein oxidation, whereas only HMG elicited nitric oxide production, indicating a role for reactive oxygen (HMG and MGA) and nitrogen (HMG) species in these effects. Regarding the enzymatic antioxidant defenses, both organic acids decreased reduced glutathione concentrations and the activities of superoxide dismutase and glutathione reductase and increased glutathione peroxidase activity. HMG also provoked an increase of catalase activity and a diminution of glucose-6-phosphate dehydrogenase activity. We finally observed that antioxidants fully prevented or attenuated HMG-induced alterations of the oxidative stress parameters, further indicating the participation of reactive species in these effects. We also observed that MK-801, a non-competitive antagonist of the N-methyl-D-aspartate (NMDA) receptor, prevented some of these effects, indicating the involvement of the NMDA receptor in HMG effects. The present data provide solid evidence that oxidative stress is induced in vivo by HMG and MGA in rat striatum and it is presumed that this pathomechanism may explain, at least in part, the cerebral alterations observed in HL deficiency.


Assuntos
Acetil-CoA C-Acetiltransferase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Gânglios da Base/metabolismo , Meglutol/análogos & derivados , Meglutol/metabolismo , Estresse Oxidativo , Acetil-CoA C-Acetiltransferase/metabolismo , Animais , Antioxidantes/farmacologia , Gânglios da Base/crescimento & desenvolvimento , Gânglios da Base/patologia , Catalase/metabolismo , Maleato de Dizocilpina/farmacologia , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Masculino , Malondialdeído/metabolismo , Carbonilação Proteica , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Superóxido Dismutase/metabolismo , Vitamina E/farmacologia
18.
Metab Brain Dis ; 28(3): 429-38, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23378107

RESUMO

Carbonyl compounds such as methylglyoxal (MGO) seem to play an important role in complications resulting from diabetes mellitus, in aging and neurodegenerative disorders. In this study, we are showing, that MGO is able to suppress cell viability and induce apoptosis in the cerebral cortex and hippocampus of neonatal rats ex-vivo. These effects are partially related with ROS production, evaluated by DCFH-DA assay. Coincubation of MGO and reduced glutathione (GSH) or Trolox (vitamin E) totally prevented ROS production but only partially prevented the MGO-induced decreased cell viability in the two brain structures, as evaluated by the MTT assay. Otherwise, L-NAME, a nitric oxide (NO) inhibitor, partially prevented ROS production in the two structures but partially prevented cytotoxicity in the hippocampus. Pharmacological inhibition of Erk, has totally attenuated MGO-induced ROS production and cytotoxicity, suggesting that MEK/Erk pathway could be upstream of ROS generation and cell survival. Otherwise, p38MAPK and JNK failed to prevent ROS generation but induced decreased cell survival consistent with ROS-independent mechanisms. We can propose that Erk, p38MAPK and JNK are involved in the cytotoxicity induced by MGO through different signaling pathways. While Erk could be an upstream effector of ROS generation, p38MAPK and JNK seem to be associated with ROS-independent cytotoxicity in neonatal rat brain. The cytotoxic damage progressed to apoptotic cell death at MGO concentration higher than those described for adult brain, suggesting that the neonatal brain is resistant to MGO-induced cell death. The consequences of MGO-induced brain damage early in life, remains to be clarified. However, it is feasible that high MGO levels during cortical and hippocampal development could be, at least in part, responsible for the impairment of cognitive functions in adulthood.


Assuntos
Encéfalo/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Aldeído Pirúvico/toxicidade , Animais , Animais Recém-Nascidos , Anexina A5/metabolismo , Antioxidantes/farmacologia , Western Blotting , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Sobrevivência Celular/efeitos dos fármacos , Corantes , Corantes Fluorescentes , Técnicas In Vitro , L-Lactato Desidrogenase/metabolismo , MAP Quinase Quinase 4/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Aldeído Pirúvico/antagonistas & inibidores , Aldeído Pirúvico/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Sais de Tetrazólio , Tiazóis , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Environ Int ; 172: 107746, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36731186

RESUMO

Perfluoroalkyl substances (PFAS) have been associated with cancer, but the potential underlying mechanisms need to be further elucidated and include studies of PFAS mixtures. This mechanistic study revealed that very low concentrations (500 pM) of the binary PFOS and PFOA mixture induced synergistic effects on human epithelial breast cell (MCF-10A) proliferation. The cell proliferation was mediated by pregnane X receptor (PXR) activation, an increase in cyclin D1 and CDK6/4 levels, decrease in p21 and p53 levels, and by regulation of phosphor-Akt and ß-catenin. The PFAS mixture also altered histone modifications, epigenetic mechanisms implicated in tumorigenesis, and promoted cell migration and invasion by reducing the levels of occludin. High-content screening using the cell painting assay, revealed that hundreds of cell features were affected by the PFAS mixture even at the lowest concentration tested (100 pM). The detailed phenotype profiling further demonstrated that the PFAS mixture altered cell morphology, mostly in parameters related to intensity and texture associated with mitochondria, endoplasmic reticulum, and nucleoli. Exposure to higher concentrations (≥50 µM) of the PFOS and PFOA mixture caused cell death through synergistic interactions that induced oxidative stress, DNA/RNA damage, and lipid peroxidation, illustrating the complexity of mixture toxicology. Increased knowledge about mixture-induced effects is important for better understanding of PFAS' possible role in cancer etiology, and may impact the risk assessment of these and other compounds. This study shows the potential of image-based multiplexed fluorescence assays and high-content screening for development of new approach methodologies in toxicology.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Humanos , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Células Epiteliais , Carcinogênese
20.
Sci Total Environ ; 878: 162741, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36914131

RESUMO

Increased exposure to manmade chemicals may be linked to an increase in immune-related diseases in humans and immune system dysfunction in wildlife. Phthalates are a group of endocrine-disrupting chemicals (EDCs) suspected to influence the immune system. The aim of this study was to characterize the persistent effects on leukocytes in the blood and spleen, as well as plasma cytokine and growth factor levels, one week after the end of five weeks of oral treatment with dibutyl phthalate (DBP; 10 or 100 mg/kg/d) in adult male mice. Flow cytometry analysis of the blood revealed that DBP exposure decreased the total leukocyte count, classical monocyte and T helper (Th) populations, whereas it increased the non-classical monocyte population compared to the vehicle control (corn oil). Immunofluorescence analysis of the spleen showed increased CD11b+Ly6G+ (marker of polymorphonuclear myeloid-derived suppressor cells; PMN-MDSCs), and CD43+staining (marker of non-classical monocytes), whereas CD3+ (marker of total T cells) and CD4+ (marker of Th cells) staining decreased. To investigate the mechanisms of action, levels of plasma cytokines and chemokines were measured using multiplexed immunoassays and other key factors were analyzed using western blotting. The observed increase in M-CSF levels and the activation of STAT3 may promote PMN-MDSC expansion and activity. Increased ARG1, NOX2 (gp91phox), and protein nitrotyrosine levels, as well as GCN2 and phosphor-eIRFα, suggest that oxidative stress and lymphocyte arrest drive the lymphocyte suppression caused by PMN-MDSCs. The plasma levels of IL-21 (promotes the differentiation of Th cells) and MCP-1 (regulates migration and infiltration of monocytes/macrophages) also decreased. These findings show that adult DBP exposure can cause persistent immunosuppressive effects, which may increase susceptibility to infections, cancers, and immune diseases, and decrease vaccine efficacy.


Assuntos
Células Supressoras Mieloides , Neoplasias , Adulto , Humanos , Masculino , Animais , Camundongos , Dibutilftalato/toxicidade , Dibutilftalato/metabolismo , Células Supressoras Mieloides/metabolismo , Citocinas/metabolismo , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA