Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Diabetologia ; 62(7): 1237-1250, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31087105

RESUMO

AIMS/HYPOTHESIS: Autoimmune attack against the insulin-producing beta cells in the pancreatic islets results in type 1 diabetes. However, despite considerable research, details of the type 1 diabetes immunopathology in situ are not fully understood mainly because of difficult access to the pancreatic islets in vivo. METHODS: Here, we used direct non-invasive confocal imaging of islets transplanted in the anterior chamber of the eye (ACE) to investigate the anti-islet autoimmunity in NOD mice before, during and after diabetes onset. ACE-transplanted islets allowed longitudinal studies of the autoimmune attack against islets and revealed the infiltration kinetics and in situ motility dynamics of fluorescence-labelled autoreactive T cells during diabetes development. Ex vivo immunostaining was also used to compare immune cell infiltrations into islet grafts in the eye and kidney as well as in pancreatic islets of the same diabetic NOD mice. RESULTS: We found similar immune infiltration in native pancreatic and ACE-transplanted islets, which established the ACE-transplanted islets as reliable reporters of the autoimmune response. Longitudinal studies in ACE-transplanted islets identified in vivo hallmarks of islet inflammation that concurred with early immune infiltration of the islets and preceded their collapse and hyperglycaemia onset. A model incorporating data on ACE-transplanted islet degranulation and swelling allowed early prediction of the autoimmune attack in the pancreas and prompted treatments to intercept type 1 diabetes. CONCLUSIONS/INTERPRETATION: The current findings highlight the value of ACE-transplanted islets in studying early type 1 diabetes pathogenesis in vivo and underscore the need for timely intervention to halt disease progression.


Assuntos
Diabetes Mellitus Tipo 1/diagnóstico por imagem , Animais , Autoimunidade/fisiologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/cirurgia , Sobrevivência de Enxerto/fisiologia , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/cirurgia , Transplante das Ilhotas Pancreáticas , Camundongos , Camundongos Endogâmicos NOD
3.
Proc Natl Acad Sci U S A ; 111(29): 10514-9, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24982192

RESUMO

Encapsulation of islets of Langerhans may represent a way to transplant islets in the absence of immunosuppression. Traditional methods for encapsulation lead to diffusional limitations imposed by the size of the capsules (600-1,000 µm in diameter), which results in core hypoxia and delayed insulin secretion in response to glucose. Moreover, the large volume of encapsulated cells does not allow implantation in sites that might be more favorable to islet cell engraftment. To address these issues, we have developed an encapsulation method that allows conformal coating of islets through microfluidics and minimizes capsule size and graft volume. In this method, capsule thickness, rather than capsule diameter, is constant and tightly defined by the microdevice geometry and the rheological properties of the immiscible fluids used for encapsulation within the microfluidic system. We have optimized the method both computationally and experimentally, and found that conformal coating allows for complete encapsulation of islets with a thin (a few tens of micrometers) continuous layer of hydrogel. Both in vitro and in vivo in syngeneic murine models of islet transplantation, the function of conformally coated islets was not compromised by encapsulation and was comparable to that of unencapsulated islets. We have further demonstrated that the structural support conferred by the coating materials protected islets from the loss of function experienced by uncoated islets during ex vivo culture.


Assuntos
Materiais Revestidos Biocompatíveis/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Microfluídica/instrumentação , Alginatos/farmacologia , Animais , Agregação Celular , Simulação por Computador , Desenho de Equipamento , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/farmacologia , Hidrodinâmica , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Microesferas , Modelos Biológicos , Polietilenoglicóis/farmacologia , Reprodutibilidade dos Testes
5.
Biotechnol Bioeng ; 112(9): 1916-26, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25786390

RESUMO

With a view toward reduction of graft loss, we explored pancreatic islet transplantation within fibrin matrices rendered pro-angiogenic by incorporation of minimal doses of vascular endothelial growth factor-A165 and platelet-derived growth factor-BB presented complexed to a fibrin-bound integrin-binding fibronectin domain. Engineered matrices allowed for extended release of pro-angiogenic factors and for their synergistic signaling with extracellular matrix-binding domains in the post-transplant period. Aprotinin addition delayed matrix degradation and prolonged pro-angiogenic factor availability within the graft. Both subcutaneous (SC) and epididymal fat pad (EFP) sites were evaluated. We show that in the SC site, diabetes reversal in mice transplanted with 1,000 IEQ of syngeneic islets was not observed for islets transplanted alone, while engineered matrices resulted in a diabetes median reversal time (MDRT) of 38 days. In the EFP site, the MDRT with 250 IEQ of syngeneic islets within the engineered matrices was 24 days versus 86 days for islets transplanted alone. Improved function of engineered grafts was associated with enhanced and earlier (by day 7) angiogenesis. Our findings show that by engineering the transplant site to promote prompt re-vascularization, engraftment and long-term function of islet grafts can be improved in relevant extrahepatic sites.


Assuntos
Fibrina/química , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Becaplermina , Proliferação de Células/efeitos dos fármacos , Humanos , Hidrogéis/química , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-sis/química , Proteínas Proto-Oncogênicas c-sis/deficiência , Proteínas Proto-Oncogênicas c-sis/farmacologia , Fator A de Crescimento do Endotélio Vascular/química
6.
Pharmacol Res ; 98: 76-85, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25814189

RESUMO

We are living exciting times in the field of beta cell replacement therapies for the treatment of diabetes. While steady progress has been recorded thus far in clinical islet transplantation, novel approaches are needed to make cell-based therapies more reproducible and leading to long-lasting success. The multiple facets of diabetes impose the need for a transdisciplinary approach to attain this goal, by targeting immunity, promoting engraftment and sustained functional potency. We discuss herein the emerging technologies applied to this rapidly evolving field.


Assuntos
Diabetes Mellitus/cirurgia , Transplante das Ilhotas Pancreáticas/métodos , Animais , Bioengenharia , Diabetes Mellitus/metabolismo , Diabetes Mellitus Tipo 1/cirurgia , Humanos , Imunomodulação
7.
Proc Natl Acad Sci U S A ; 109(52): 21456-61, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23236142

RESUMO

The autonomic nervous system is thought to modulate blood glucose homeostasis by regulating endocrine cell activity in the pancreatic islets of Langerhans. The role of islet innervation, however, has remained elusive because the direct effects of autonomic nervous input on islet cell physiology cannot be studied in the pancreas. Here, we used an in vivo model to study the role of islet nervous input in glucose homeostasis. We transplanted islets into the anterior chamber of the eye and found that islet grafts became densely innervated by the rich parasympathetic and sympathetic nervous supply of the iris. Parasympathetic innervation was imaged intravitally by using transgenic mice expressing GFP in cholinergic axons. To manipulate selectively the islet nervous input, we increased the ambient illumination to increase the parasympathetic input to the islet grafts via the pupillary light reflex. This reduced fasting glycemia and improved glucose tolerance. These effects could be blocked by topical application of the muscarinic antagonist atropine to the eye, indicating that local cholinergic innervation had a direct effect on islet function in vivo. By using this approach, we found that parasympathetic innervation influences islet function in C57BL/6 mice but not in 129X1 mice, which reflected differences in innervation densities and may explain major strain differences in glucose homeostasis. This study directly demonstrates that autonomic axons innervating the islet modulate glucose homeostasis.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Olho/inervação , Ilhotas Pancreáticas/fisiologia , Modelos Biológicos , Animais , Proteínas de Fluorescência Verde/metabolismo , Iris/inervação , Iris/fisiologia , Transplante das Ilhotas Pancreáticas , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Nervosas
8.
Circulation ; 127(4): 463-75, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23250993

RESUMO

BACKGROUND: Heart transplantation is a lifesaving procedure for patients with end-stage heart failure. Despite much effort and advances in the field, current immunosuppressive regimens are still associated with poor long-term cardiac allograft outcomes, and with the development of complications, including infections and malignancies, as well. The development of a novel, short-term, and effective immunomodulatory protocol will thus be an important achievement. The purine ATP, released during cell damage/activation, is sensed by the ionotropic purinergic receptor P2X7 (P2X7R) on lymphocytes and regulates T-cell activation. Novel clinical-grade P2X7R inhibitors are available, rendering the targeting of P2X7R a potential therapy in cardiac transplantation. METHODS AND RESULTS: We analyzed P2X7R expression in patients and mice and P2X7R targeting in murine recipients in the context of cardiac transplantation. Our data demonstrate that P2X7R is specifically upregulated in graft-infiltrating lymphocytes in cardiac-transplanted humans and mice. Short-term P2X7R targeting with periodate-oxidized ATP promotes long-term cardiac transplant survival in 80% of murine recipients of a fully mismatched allograft. Long-term survival of cardiac transplants was associated with reduced T-cell activation, T-helper cell 1/T-helper cell 17 differentiation, and inhibition of STAT3 phosphorylation in T cells, thus leading to a reduced transplant infiltrate and coronaropathy. In vitro genetic upregulation of the P2X7R pathway was also shown to stimulate T-helper cell 1/T-helper cell 17 cell generation. Finally, P2X7R targeting halted the progression of coronaropathy in a murine model of chronic rejection as well. CONCLUSIONS: P2X7R targeting is a novel clinically relevant strategy to prolong cardiac transplant survival.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Rejeição de Enxerto/tratamento farmacológico , Rejeição de Enxerto/mortalidade , Transplante de Coração/mortalidade , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/farmacologia , Adulto , Animais , Doença Crônica , Modelos Animais de Doenças , Feminino , Rejeição de Enxerto/imunologia , Transplante de Coração/imunologia , Humanos , Imunocompetência/efeitos dos fármacos , Imunocompetência/imunologia , Isoantígenos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/imunologia , Fator de Transcrição STAT3/metabolismo , Sobreviventes/estatística & dados numéricos , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia
9.
Stem Cells ; 31(9): 1966-79, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23847135

RESUMO

Peribiliary glands (PBGs) in bile duct walls, and pancreatic duct glands (PDGs) associated with pancreatic ducts, in humans of all ages, contain a continuous, ramifying network of cells in overlapping maturational lineages. We show that proximal (PBGs)-to-distal (PDGs) maturational lineages start near the duodenum with cells expressing markers of pluripotency (NANOG, OCT4, and SOX2), proliferation (Ki67), self-replication (SALL4), and early hepato-pancreatic commitment (SOX9, SOX17, PDX1, and LGR5), transitioning to PDG cells with no expression of pluripotency or self-replication markers, maintenance of pancreatic genes (PDX1), and expression of markers of pancreatic endocrine maturation (NGN3, MUC6, and insulin). Radial-axis lineages start in PBGs near the ducts' fibromuscular layers with stem cells and end at the ducts' lumens with cells devoid of stem cell traits and positive for pancreatic endocrine genes. Biliary tree-derived cells behaved as stem cells in culture under expansion conditions, culture plastic and serum-free Kubota's Medium, proliferating for months as undifferentiated cells, whereas pancreas-derived cells underwent only approximately 8-10 divisions, then partially differentiated towards an islet fate. Biliary tree-derived cells proved precursors of pancreas' committed progenitors. Both could be driven by three-dimensional conditions, islet-derived matrix components and a serum-free, hormonally defined medium for an islet fate (HDM-P), to form spheroids with ultrastructural, electrophysiological and functional characteristics of neoislets, including glucose regulatability. Implantation of these neoislets into epididymal fat pads of immunocompromised mice, chemically rendered diabetic, resulted in secretion of human C-peptide, regulatable by glucose, and able to alleviate hyperglycemia in hosts. The biliary tree-derived stem cells and their connections to pancreatic committed progenitors constitute a biological framework for life-long pancreatic organogenesis.


Assuntos
Sistema Biliar/citologia , Linhagem da Célula , Organogênese , Pâncreas/citologia , Pâncreas/crescimento & desenvolvimento , Células-Tronco/citologia , Adulto , Animais , Antígenos de Neoplasias/metabolismo , Biomarcadores/metabolismo , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/terapia , Fenômenos Eletrofisiológicos , Molécula de Adesão da Célula Epitelial , Regulação da Expressão Gênica , Humanos , Hiperglicemia/terapia , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/fisiologia , Ilhotas Pancreáticas/ultraestrutura , Transplante das Ilhotas Pancreáticas , Camundongos , Organogênese/genética , Ductos Pancreáticos/citologia , Fenótipo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Esferoides Celulares/ultraestrutura , Nicho de Células-Tronco/genética , Células-Tronco/metabolismo
10.
Proc Natl Acad Sci U S A ; 108(31): 12863-8, 2011 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-21768391

RESUMO

Intravital imaging emerged as an indispensible tool in biological research, and a variety of imaging techniques have been developed to noninvasively monitor tissues in vivo. However, most of the current techniques lack the resolution to study events at the single-cell level. Although intravital multiphoton microscopy has addressed this limitation, the need for repeated noninvasive access to the same tissue in longitudinal in vivo studies remains largely unmet. We now report on a previously unexplored approach to study immune responses after transplantation of pancreatic islets into the anterior chamber of the mouse eye. This approach enabled (i) longitudinal, noninvasive imaging of transplanted tissues in vivo; (ii) in vivo cytolabeling to assess cellular phenotype and viability in situ; (iii) local intervention by topical application or intraocular injection; and (iv) real-time tracking of infiltrating immune cells in the target tissue.


Assuntos
Câmara Anterior/citologia , Ilhotas Pancreáticas/citologia , Microscopia Confocal/métodos , Linfócitos T/citologia , Amidas/farmacologia , Animais , Câmara Anterior/metabolismo , Câmara Anterior/cirurgia , Antagonistas dos Receptores CCR5 , Quimiocinas/farmacologia , Diabetes Mellitus Experimental/terapia , Ensaio de Imunoadsorção Enzimática , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interferon gama/metabolismo , Interleucina-2/metabolismo , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Microscopia de Vídeo/métodos , Compostos de Amônio Quaternário/farmacologia , Receptores CCR5/metabolismo , Análise de Célula Única/métodos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Fatores de Tempo
11.
BMJ Open Diabetes Res Care ; 12(2)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485229

RESUMO

INTRODUCTION: Static incubation (static glucose-stimulated insulin secretion, sGSIS) is a measure of islet secretory function. The Stimulation Index (SI; insulin produced in high glucose/insulin produced in low glucose) is currently used as a product release criterion of islet transplant potency. RESEARCH DESIGN AND METHODS: Our hypothesis was that the Delta, insulin secreted in high glucose minus insulin secreted in low glucose, would be more predictive. To evaluate this hypothesis, sGSIS was performed on 32 consecutive human islet preparations, immobilizing the islets in a slurry of Sepharose beads to minimize mechanical perturbation. Simultaneous full-mass subrenal capsular transplants were performed in chemically induced diabetic immunodeficient mice. Logistic regression analysis was used to determine optimal cut-points for diabetes reversal time and the Fisher Exact Test was used to assess the ability of the Delta and the SI to accurately classify transplant outcomes. Receiver operating characteristic curve analysis was performed on cut-point grouped data, assessing the predictive power and optimal cut-point for each sGSIS potency metric. Finally, standard Kaplan-Meier-type survival analysis was conducted. RESULTS: In the case of the sGSIS the Delta provided a superior islet potency metric relative to the SI.ConclusionsThe sGSIS Delta value is predicitive of time to diabetes reversal in the full mass human islet transplant bioassay.


Assuntos
Diabetes Mellitus , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Camundongos , Animais , Secreção de Insulina , Glucose/farmacologia , Glucose/metabolismo , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas/fisiologia , Diabetes Mellitus/metabolismo , Insulina/metabolismo , Bioensaio
12.
Proc Natl Acad Sci U S A ; 107(14): 6465-70, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20308565

RESUMO

Extracellular ATP has been proposed as a paracrine signal in rodent islets, but it is unclear what role ATP plays in human islets. We now show the presence of an ATP signaling pathway that enhances the human beta cell's sensitivity and responsiveness to glucose fluctuations. By using in situ hybridization, RT-PCR, immunohistochemistry, and Western blotting as well as recordings of cytoplasmic-free Ca(2+) concentration, [Ca(2+)](i), and hormone release in vitro, we show that human beta cells express ionotropic ATP receptors of the P2X(3) type and that activation of these receptors by ATP coreleased with insulin amplifies glucose-induced insulin secretion. Released ATP activates P2X(3) receptors in the beta-cell plasma membrane, resulting in increased [Ca(2+)](i) and enhanced insulin secretion. Therefore, in human islets, released ATP forms a positive autocrine feedback loop that sensitizes the beta cell's secretory machinery. This may explain how the human pancreatic beta cell can respond so effectively to relatively modest changes in glucose concentration under physiological conditions in vivo.


Assuntos
Trifosfato de Adenosina/metabolismo , Comunicação Autócrina , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Receptores Purinérgicos P2/metabolismo , Cálcio/metabolismo , Humanos , Secreção de Insulina , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2X3 , Transdução de Sinais
13.
Curr Opin Organ Transplant ; 18(6): 672-81, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24220050

RESUMO

PURPOSE OF REVIEW: Discuss the recent progress on the clinical use of mesenchymal stromal (stem) cells (MSC) in solid organ transplantation (SOT). RECENT FINDINGS: Tissue repair and immunomodulatory properties have been recognized for MSC obtained from different human tissues. MSC-based therapy has been proposed to reduce ischemia-reperfusion injury and to promote immune tolerance. The results of recent clinical trial support the safety and promising effects of autologous and allogeneic MSC in SOT. Collectively, the use of MSC in recipients of living donor kidney transplantation was associated with improved graft function, reduced rejection, ability to omit induction and/or lower maintenance immunosuppression regimen, as well as to treat rejection episodes. SUMMARY: We are living in very exciting times with the implementation of novel clinical trials aimed at establishing safety, feasibility and efficacy of cellular therapies including MSC to improve SOT outcomes. The results of the initial clinical trials support the safety of MSC-based therapy and justifying cautious optimism for the immediate future.


Assuntos
Células-Tronco Mesenquimais/imunologia , Transplante de Órgãos , Ensaios Clínicos como Assunto , Humanos , Tolerância Imunológica/imunologia , Transplante de Células-Tronco Mesenquimais , Transplante de Órgãos/efeitos adversos , Traumatismo por Reperfusão/imunologia
14.
Diabetes ; 72(11): 1641-1651, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37625134

RESUMO

Extracellular (e)ATP, a potent proinflammatory molecule, is released by dying/damaged cells at the site of inflammation and is degraded by the membrane ectonucleotidases CD39 and CD73. In this study, we sought to unveil the role of eATP degradation in autoimmune diabetes. We then assessed the effect of soluble CD39 (sCD39) administration in prevention and reversal studies in NOD mice as well as in mechanistic studies. Our data showed that eATP levels were increased in hyperglycemic NOD mice compared with prediabetic NOD mice. CD39 and CD73 were found expressed by both α- and ß-cells and by different subsets of T cells. Importantly, prediabetic NOD mice displayed increased frequencies of CD3+CD73+CD39+ cells within their pancreata, pancreatic lymph nodes, and spleens. The administration of sCD39 into prediabetic NOD mice reduced their eATP levels, abrogated the proliferation of CD4+- and CD8+-autoreactive T cells, and increased the frequency of regulatory T cells, while delaying the onset of T1D. Notably, concomitant administration of sCD39 and anti-CD3 showed a strong synergism in restoring normoglycemia in newly hyperglycemic NOD mice compared with monotherapy with anti-CD3 or with sCD39. The eATP/CD39 pathway plays an important role in the onset of T1D, and its targeting might represent a potential therapeutic strategy in T1D.

15.
FASEB J ; 25(11): 3949-57, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21804131

RESUMO

We investigated the physiological role of Gß5, a unique G protein ß subunit that dimerizes with regulators of G protein signaling (RGS) proteins of the R7 family instead of Gγ. Gß5 is essential for stability of these complexes, so that its knockout (KO)causes degradation of the entire Gß5-R7 family. We report that the Gß5-KO mice remain leaner than the wild type (WT) throughout their lifetime and are resistant to a high-fat diet. They have a 5-fold increase in locomotor activity, increased thermogenesis, and lower serum insulin, all of which correlate with a higher level of secreted epinephrine. Heterozygous (HET) mice are 2-fold more active than WT mice. Surprisingly, with respect to body weight, the HET mice display a phenotype opposite to that of the KO mice: by the age of 6 mo, they are ≥ 15% heavier than the WT and have increased adiposity, insulin resistance, and liver steatosis. These changes occur in HET mice fed a normal diet and without apparent hyperphagia, mimicking basic characteristics of human metabolic syndrome. We conclude that even a partial reduction in Gß5-R7 level can perturb normal animal metabolism and behavior. Our data on Gß5 haploinsufficient mice may explain earlier observations of genetic linkage between R7 family mutations and obesity in humans.


Assuntos
Comportamento Animal , Peso Corporal/genética , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Atividade Motora , Animais , Glicemia/metabolismo , Catecolaminas/urina , Dieta Hiperlipídica , Ingestão de Alimentos , Metabolismo Energético , Epinefrina/metabolismo , Heterozigoto , Insulina/sangue , Camundongos , Camundongos Knockout
16.
JAMA ; 307(11): 1169-77, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22436957

RESUMO

CONTEXT: Antibody-based induction therapy plus calcineurin inhibitors (CNIs) reduce acute rejection rates in kidney recipients; however, opportunistic infections and toxic CNI effects remain challenging. Reportedly, mesenchymal stem cells (MSCs) have successfully treated graft-vs-host disease. OBJECTIVE: To assess autologous MSCs as replacement of antibody induction for patients with end-stage renal disease who undergo ABO-compatible, cross-match-negative kidney transplants from a living-related donor. DESIGN, SETTING, AND PATIENTS: One hundred fifty-nine patients were enrolled in this single-site, prospective, open-label, randomized study from February 2008-May 2009, when recruitment was completed. INTERVENTION: Patients were inoculated with marrow-derived autologous MSC (1-2 x 10(6)/kg) at kidney reperfusion and two weeks later. Fifty-three patients received standard-dose and 52 patients received low-dose CNIs (80% of standard); 51 patients in the control group received anti-IL-2 receptor antibody plus standard-dose CNIs. MAIN OUTCOME MEASURES: The primary measure was 1-year incidence of acute rejection and renal function (estimated glomerular filtration rate [eGFR]); the secondary measure was patient and graft survival and incidence of adverse events. RESULTS: Patient and graft survival at 13 to 30 months was similar in all groups. After 6 months, 4 of 53 patients (7.5%) in the autologous MSC plus standard-dose CNI group (95% CI, 0.4%-14.7%; P = .04) and 4 of 52 patients (7.7%) in the low-dose group (95% CI, 0.5%-14.9%; P = .046) compared with 11 of 51 controls (21.6%; 95% CI, 10.5%-32.6%) had biopsy-confirmed acute rejection. None of the patients in either autologous MSC group had glucorticoid-resistant rejection, whereas 4 patients (7.8%) in the control group did (95% CI, 0.6%-15.1%; overall P = .02). Renal function recovered faster among both MSC groups showing increased eGFR levels during the first month after surgery than the control group. Patients receiving standard-dose CNI had a mean difference of 6.2 mL/min per 1.73 m(2) (95% CI, 0.4-11.9; P=.04) and those in the low-dose CNI of 10.0 mL/min per 1.73 m(2) (95% CI, 3.8-16.2; P=.002). Also, during the 1-year follow-up, combined analysis of MSC-treated groups revealed significantly decreased risk of opportunistic infections than the control group (hazard ratio, 0.42; 95% CI, 0.20-0.85, P=.02) CONCLUSION: Among patients undergoing renal transplant, the use of autologous MSCs compared with anti-IL-2 receptor antibody induction therapy resulted in lower incidence of acute rejection, decreased risk of opportunistic infection, and better estimated renal function at 1 year. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT00658073.


Assuntos
Terapia de Imunossupressão/métodos , Falência Renal Crônica/cirurgia , Transplante de Rim/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Adolescente , Adulto , Anticorpos/uso terapêutico , Formação de Anticorpos , Inibidores de Calcineurina , Feminino , Rejeição de Enxerto/prevenção & controle , Humanos , Rim/fisiologia , Transplante de Rim/imunologia , Doadores Vivos , Masculino , Pessoa de Meia-Idade , Infecções Oportunistas , Receptores de Interleucina-2/antagonistas & inibidores , Análise de Sobrevida , Resultado do Tratamento , Adulto Jovem
17.
Stroke ; 42(5): 1404-11, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21454816

RESUMO

BACKGROUND AND PURPOSE: Stroke and heart disease are the most serious complications of diabetes accounting for >65% of mortality among diabetics. Although intensive insulin therapy has significantly improved the prognosis of diabetes and its complications, it is associated with an elevated risk of recurrent hypoglycemia (RH). We tested the hypothesis that RH exacerbates cerebral ischemic damage in a rodent model of diabetes. METHOD: We determined the extent of neuronal death in CA1 hippocampus after global cerebral ischemia in control and streptozotocin-induced diabetic rats. Diabetic animals included an insulin-treated streptozotocin-diabetic (ITD) group and a group of ITD rats exposed also to 10 episodes of hypoglycemia (ITD+recurrent hypoglycemia: RH). Hypoglycemia (55 to 65 mg/dL blood glucose) was induced twice daily for 5 consecutive days. RESULTS: As expected, uncontrolled diabetes (streptozotocin-diabetes, untreated animals) resulted in a 70% increase in ischemic damage as compared with the control group. Insulin treatment was able to lower ischemic damage by 64% as compared with the diabetic group. However, ITD+RH rats had 44% more damage when compared with the ITD group. We also observed that free radical release from mitochondria is increased in ITD+RH rats. CONCLUSIONS: This is the first report on the impact of RH in exacerbating cerebral ischemic damage in diabetic animals. Our results suggest that increased free radical release from mitochondria may be responsible for observed increased ischemic damage in ITD+RH rats. RH thus may be an unexplored but important factor responsible for increased ischemic damage in diabetes.


Assuntos
Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/fisiopatologia , Hipoglicemia/complicações , Hipoglicemia/fisiopatologia , Animais , Isquemia Encefálica/etiologia , Região CA1 Hipocampal/patologia , Morte Celular , Diabetes Mellitus Experimental/tratamento farmacológico , Modelos Animais de Doenças , Radicais Livres/metabolismo , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Masculino , Mitocôndrias/metabolismo , Neurônios/patologia , Ratos , Ratos Wistar , Recidiva , Fatores de Risco , Estreptozocina
18.
Curr Diab Rep ; 11(5): 413-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21660419

RESUMO

Pancreas transplantation is a therapeutic option for patients with type 1 diabetes. Advances in immunosuppression have reduced immunologic failures, and these are usually categorized as chronic rejection. Yet studies in our cohort of pancreas transplant recipients identified several patients in whom chronic islet autoimmunity led to recurrent diabetes, despite immunosuppression that prevented rejection. Recurrent diabetes in our cohort is as frequent as chronic rejection, and thus is a significant cause of immunologic graft failure. Our studies demonstrated islet autoimmunity by the presence of autoantibodies and autoreactive T cells, which mediated ß-cell destruction in a transplantation model. Biopsy of the transplanted pancreas revealed variable degrees of ß-cell loss, with or without insulitis, in the absence of pancreas and kidney transplant rejection. Additional research is needed to better understand recurrent disease and to identify new treatment regimens that can suppress autoimmunity, as in our experience this is not effectively inhibited by conventional immunosuppression.


Assuntos
Autoimunidade/imunologia , Transplante de Pâncreas/imunologia , Autoanticorpos/imunologia , Diabetes Mellitus Tipo 1/terapia , Humanos
19.
Kidney Int ; 75(4): 381-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18971923

RESUMO

C-jun N-terminal kinase (JNK) regulates both the development of insulin resistance and inflammation. Podocytes of the widely used db/db mouse model of diabetic nephropathy lose their ability to respond to insulin as albuminuria develops, in comparison to control db/+ mice. Here we tested whether JNK inhibition or its gene deletion would prevent albuminuria in experimental diabetes. Phosphorylated/total JNK was significantly increased in vivo in glomeruli of db/db compared to db/+ mice. Treatment of podocytes isolated from these two strains of mice with tumor necrosis factor-alpha caused greater phosphorylation of JNK in those obtained from diabetic animals. When db/db mice were treated with a cell-permeable TAT-JNK inhibitor peptide, their insulin sensitivity and glycemia significantly improved compared to controls. We induced diabetes in JNK1 knockout mice with streptozotocin and found that they had significantly better insulin sensitivity compared to diabetic wild-type or JNK2 knockout mice. Albuminuria was, however, worse in all mice treated with the JNK inhibitor and in diabetic JNK2 knockout mice compared to controls. Nephrin expression was also reduced in JNK inhibitor-treated mice compared to controls. A similar degree of mesangial expansion was found in all diabetic mice. Our study shows that targeting JNK to improve systemic insulin sensitivity does not necessarily prevent diabetic nephropathy.


Assuntos
Albuminúria/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Resistência à Insulina , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Genótipo , Hiperglicemia/tratamento farmacológico , Insulina/farmacologia , Proteínas de Membrana/análise , Camundongos , Camundongos Knockout , Inibidores de Proteínas Quinases/farmacologia
20.
Lab Invest ; 88(11): 1167-77, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18779781

RESUMO

Substantial amounts of nonendocrine cells are implanted as part of human islet grafts, and a possible influence of nonendocrine cells on clinical islet transplantation outcome has been postulated. There are currently no product release criteria specific for nonendocrine cells due to lack of available methods. The aims of this study were to develop a method for the evaluation of pancreatic ductal cells (PDCs) for clinical islet transplantation and to characterize them regarding phenotype, viability, and function. We assessed 161 human islet preparations using laser scanning cytometry (LSC/iCys) for phenotypic analysis of nonendocrine cells and flow cytometry (FACS) for PDC viability. PDC and beta-cells obtained from different density fractions during the islet cell purification were compared in terms of viability. Furthermore, we examined PDC ability to produce proinflammatory cytokines/chemokines, vascular endothelial growth factor (VEGF) and tissue factor (TF) relevant to islet graft outcome. Phenotypic analysis by LSC/iCys indicated that single staining for CK19 or CA19-9 was not enough for identifying PDCs, and that double staining for amylase and CK19 or CA19-9 allowed for quantitative evaluation of acinar cells and PDC content in human islet preparation. PDC showed a significantly higher viability than beta-cells (PDC vs beta-cell: 75.5+/-13.9 and 62.7+/-18.7%; P<0.0001). Although beta-cell viability was independent of its density, that of PDCs was higher as the density from which they were recovered increased. There was no correlation between PDCs and beta-cell viability (R(2)=0.0078). PDCs sorted from high-density fractions produced significantly higher amounts of proinflammatory mediators and VEGF, but not TF. We conclude that PDCs isolated from different fractions had different viability and functions. The precise characterization and assessment of these cells in addition to beta-cells in human islet cell products may be of assistance in understanding their contribution to islet engraftment and in developing strategies to enhance islet graft function.


Assuntos
Antígeno CA-19-9 , Células Secretoras de Insulina/citologia , Transplante das Ilhotas Pancreáticas , Queratina-19 , Ductos Pancreáticos/citologia , Animais , Diabetes Mellitus Experimental , Humanos , Células Secretoras de Insulina/classificação , Ilhotas Pancreáticas/citologia , Citometria de Varredura a Laser , Camundongos , Camundongos Nus , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA