Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genet Sel Evol ; 56(1): 2, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172652

RESUMO

BACKGROUND: The presence of goats in the Canary Islands dates back to the late 1st millennium BC, which coincides with the colonization by the Amazigh settlers. However, the exact geographic origin of Canarian goats is uncertain since the Amazigh peoples were distributed over a wide spatial range. Nowadays, three Canarian breeds (Palmera, Majorera and Tinerfeña) are officially recognized, along with two distinct South and North Tinerfeña ecotypes, with the South Tinerfeña and Majorera goats thriving in arid and dry semi-desertic environments and the Palmera and North Tinerfeña goats are adapted to humid and temperate areas that are influenced by trade winds. Genotypes for 224 Canarian goats were generated using the Illumina Goat single nucleotide polymorphism (SNP)50 BeadChip. By merging these data with the genotypes from 1007 individuals of African and Southern European ancestry, our aim was to ascertain the geographic origin of the Canarian goats and identify genes associated with adaptation to diverse environmental conditions. RESULTS: The diversity indices of the Canarian breeds align with most of those of the analyzed local breeds from Africa and Europe, except for the Palmera goats that showed lower levels of genetic variation. The Canarian breeds demonstrate a significant genetic differentiation compared to other populations, which indicates a history of prolonged geographic isolation. Moreover, the phylogenetic reconstruction indicated that the ancestry of the Canarian goats is fundamentally North African rather than West African. The ADMIXTURE and the TreeMix analyses showed no evidence of gene flow between Canarian goats and other continental breeds. The analysis of runs of homozygosity (ROH) identified 13 ROH islands while the window-based FST method detected 25 genomic regions under selection. Major signals of selection were found on Capra hircus (CHI) chromosomes 6, 7, and 10 using various comparisons and methods. CONCLUSIONS: This genome-wide analysis sheds new light on the evolutionary history of the four breeds that inhabit the Canary Islands. Our findings suggest a North African origin of the Canarian goats. In addition, within the genomic regions highlighted by the ROH and FST approaches, several genes related to body size and heat tolerance were identified.


Assuntos
Cabras , Polimorfismo de Nucleotídeo Único , Animais , Genótipo , Cabras/genética , Filogenia
2.
Genet Sel Evol ; 56(1): 32, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698323

RESUMO

BACKGROUND: Rendena is a dual-purpose cattle breed, which is primarily found in the Italian Alps and the eastern areas of the Po valley, and recognized for its longevity, fertility, disease resistance and adaptability to steep Alpine pastures. It is categorized as 'vulnerable to extinction' with only 6057 registered animals in 2022, yet no comprehensive analyses of its molecular diversity have been performed to date. The aim of this study was to analyse the origin, genetic diversity, and genomic signatures of selection in Rendena cattle using data from samples collected in 2000 and 2018, and shed light on the breed's evolution and conservation needs. RESULTS: Genetic analysis revealed that the Rendena breed shares genetic components with various Alpine and Po valley breeds, with a marked genetic proximity to the Original Braunvieh breed, reflecting historical restocking efforts across the region. The breed shows signatures of selection related to both milk and meat production, environmental adaptation and immune response, the latter being possibly the result of multiple rinderpest epidemics that swept across the Alps in the eighteenth century. An analysis of the Rendena cattle population spanning 18 years showed an increase in the mean level of inbreeding over time, which is confirmed by the mean number of runs of homozygosity per individual, which was larger in the 2018 sample. CONCLUSIONS: The Rendena breed, while sharing a common origin with Brown Swiss, has developed distinct traits that enable it to thrive in the Alpine environment and make it highly valued by local farmers. Preserving these adaptive features is essential, not only for maintaining genetic diversity and enhancing the ability of this traditional animal husbandry to adapt to changing environments, but also for guaranteeing the resilience and sustainability of both this livestock system and the livelihoods within the Rendena valley.


Assuntos
Peste Bovina , Seleção Genética , Animais , Bovinos/genética , Peste Bovina/genética , Variação Genética , Doenças dos Bovinos/genética , Resistência à Doença/genética , Polimorfismo de Nucleotídeo Único , Adaptação Fisiológica/genética , Itália , Cruzamento , Epidemias
3.
Genet Sel Evol ; 55(1): 24, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013467

RESUMO

BACKGROUND: To enhance and extend the knowledge about the global historical and phylogenetic relationships between Merino and Merino-derived breeds, 19 populations were genotyped with the OvineSNP50 BeadChip specifically for this study, while an additional 23 populations from the publicly available genotypes were retrieved. Three complementary statistical tests, Rsb (extended haplotype homozygosity between-populations), XP-EHH (cross-population extended haplotype homozygosity), and runs of homozygosity (ROH) islands were applied to identify genomic variants with potential impact on the adaptability of Merino genetic type in two contrasting climate zones. RESULTS: The results indicate that a large part of the Merino's genetic relatedness and admixture patterns are explained by their genetic background and/or geographic origin, followed by local admixture. Multi-dimensional scaling, Neighbor-Net, Admixture, and TREEMIX analyses consistently provided evidence of the role of Australian, Rambouillet and German strains in the extensive gene introgression into the other Merino and Merino-derived breeds. The close relationship between Iberian Merinos and other South-western European breeds is consistent with the Iberian origin of the Merino genetic type, with traces from previous contributions of other Mediterranean stocks. Using Rsb and XP-EHH approaches, signatures of selection were detected spanning four genomic regions located on Ovis aries chromosomes (OAR) 1, 6 and 16, whereas two genomic regions on OAR6, that partially overlapped with the previous ones, were highlighted by ROH islands. Overall, the three approaches identified 106 candidate genes putatively under selection. Among them, genes related to immune response were identified via the gene interaction network. In addition, several candidate genes were found, such as LEKR1, LCORL, GHR, RBPJ, BMPR1B, PPARGC1A, and PRKAA1, related to morphological, growth and reproductive traits, adaptive thermogenesis, and hypoxia responses. CONCLUSIONS: To the best of our knowledge, this is the first comprehensive dataset that includes most of the Merino and Merino-derived sheep breeds raised in different regions of the world. The results provide an in-depth picture of the genetic makeup of the current Merino and Merino-derived breeds, highlighting the possible selection pressures associated with the combined effect of anthropic and environmental factors. The study underlines the importance of Merino genetic types as invaluable resources of possible adaptive diversity in the context of the occurring climate changes.


Assuntos
Variação Genética , Carneiro Doméstico , Ovinos/genética , Animais , Carneiro Doméstico/genética , Filogenia , Austrália , Genótipo , Polimorfismo de Nucleotídeo Único
4.
J Dairy Sci ; 106(8): 5537-5553, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37291034

RESUMO

Among Italian dairy cattle, the Holstein is the most reared breed for the production of Parmigiano Reggiano protected designation of origin cheese, which represents one of the most renowned products in the entire Italian dairy industry. In this work, we used a medium-density genome-wide data set consisting of 79,464 imputed SNPs to study the genetic structure of Italian Holstein breed, including the population reared in the area of Parmigiano Reggiano cheese production, and assessing its distinctiveness from the North American population. Multidimensional scaling and ADMIXTURE approaches were used to explore the genetic structure among populations. We also investigated putative genomic regions under selection among these 3 populations by combining 4 different statistical methods based either on allele frequencies (single marker and window-based) or extended haplotype homozygosity (EHH; standardized log-ratio of integrated EHH and cross-population EHH). The genetic structure results allowed us to clearly distinguish the 3 Holstein populations; however, the most remarkable difference was observed between Italian and North American stock. Selection signature analyses identified several significant SNPs falling within or closer to genes with known roles in several traits such as milk quality, resistance to disease, and fertility. In particular, a total of 22 genes related to milk production have been identified using the 2 allele frequency approaches. Among these, a convergent signal has been found in the VPS8 gene which resulted to be involved in milk traits, whereas other genes (CYP7B1, KSR2, C4A, LIPE, DCDC1, GPR20, and ST3GAL1) resulted to be associated with quantitative trait loci related to milk yield and composition in terms of fat and protein percentage. In contrast, a total of 7 genomic regions were identified combining the results of standardized log-ratio of integrated EHH and cross-population EHH. In these regions candidate genes for milk traits were also identified. Moreover, this was also confirmed by the enrichment analyses in which we found that the majority of the significantly enriched quantitative trait loci were linked to milk traits, whereas the gene ontology and pathway enrichment analysis pointed to molecular functions and biological processes involved in AA transmembrane transport and methane metabolism pathway. This study provides information on the genetic structure of the examined populations, showing that they are distinguishable from each other. Furthermore, the selection signature analyses can be considered as a starting point for future studies in the identification of causal mutations and consequent implementation of more practical application.


Assuntos
Genômica , Seleção Genética , Bovinos/genética , Animais , Locos de Características Quantitativas , Fenótipo , Leite , Itália , Polimorfismo de Nucleotídeo Único , América do Norte , Estudo de Associação Genômica Ampla/veterinária
5.
Genet Sel Evol ; 53(1): 48, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078254

RESUMO

BACKGROUND: During the Neolithic expansion, cattle accompanied humans and spread from their domestication centres to colonize the ancient world. In addition, European cattle occasionally intermingled with both indicine cattle and local aurochs resulting in an exclusive pattern of genetic diversity. Among the most ancient European cattle are breeds that belong to the so-called Podolian trunk, the history of which is still not well established. Here, we used genome-wide single nucleotide polymorphism (SNP) data on 806 individuals belonging to 36 breeds to reconstruct the origin and diversification of Podolian cattle and to provide a reliable scenario of the European colonization, through an approximate Bayesian computation random forest (ABC-RF) approach. RESULTS: Our results indicate that European Podolian cattle display higher values of genetic diversity indices than both African taurine and Asian indicine breeds. Clustering analyses show that Podolian breeds share close genomic relationships, which suggests a likely common genetic ancestry. Among the simulated and tested scenarios of the colonization of Europe from taurine cattle, the greatest support was obtained for the model assuming at least two waves of diffusion. Time estimates are in line with an early migration from the domestication centre of non-Podolian taurine breeds followed by a secondary migration of Podolian breeds. The best fitting model also suggests that the Italian Podolian breeds are the result of admixture between different genomic pools. CONCLUSIONS: This comprehensive dataset that includes most of the autochthonous cattle breeds belonging to the so-called Podolian trunk allowed us not only to shed light onto the origin and diversification of this group of cattle, but also to gain new insights into the diffusion of European cattle. The most well-supported scenario of colonization points to two main waves of migrations: with one that occurred alongside with the Neolithic human expansion and gave rise to the non-Podolian taurine breeds, and a more recent one that favoured the diffusion of European Podolian. In this process, we highlight the importance of both the Mediterranean and Danube routes in promoting European cattle colonization. Moreover, we identified admixture as a driver of diversification in Italy, which could represent a melting pot for Podolian cattle.


Assuntos
Bovinos/genética , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Seleção Artificial , Distribuição Animal , Animais , Teorema de Bayes , Evolução Molecular , Frequência do Gene
6.
Genet Sel Evol ; 53(1): 92, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34895134

RESUMO

BACKGROUND: Climate and farming systems, several of which are considered as low-input agricultural systems, vary between goat populations from Northern and Southern Italy and have led to different management practices. These processes have impacted genome shaping in terms of inbreeding and regions under selection and resulted in differences between the northern and southern populations. Both inbreeding and signatures of selection can be pinpointed by the analysis of runs of homozygosity (ROH), which provides useful information to assist the management of this species in different rural areas. RESULTS: We analyzed the ROH distribution and inbreeding (FROH) in 902 goats from the Italian Goat Consortium2 dataset. We evaluated the differences in individual ROH number and length between goat breeds from Northern (NRD) and Central-southern (CSD) Italy. Then, we identified the signatures of selection that differentiate these two groups using three methods: ROH, ΔROH, and averaged FST. ROH analyses showed that some Italian goat breeds have a lower inbreeding coefficient, which is attributable to their management and history. ROH are longer in breeds that are undergoing non-optimal management or with small population size. In several small breeds, the ROH length classes are balanced, reflecting more accurate mating planning. The differences in climate and management between the NRD and CSD groups have resulted in different ROH lengths and numbers: the NRD populations bred in isolated valleys present more and shorter ROH segments, while the CSD populations have fewer and longer ROH, which is likely due to the fact that they have undergone more admixture events during the horizontal transhumance practice followed by a more recent standardization. We identified four genes within signatures of selection on chromosome 11 related to fertility in the NRD group, and 23 genes on chromosomes 5 and 6 related to growth in the CSD group. Finally, we identified 17 genes on chromosome 12 related to environmental adaptation and body size with high homozygosity in both groups. CONCLUSIONS: These results show how different management practices have impacted the level of genomic inbreeding in two Italian goat groups and could be useful to assist management in a low-input system while safeguarding the diversity of small populations.


Assuntos
Cabras , Polimorfismo de Nucleotídeo Único , Animais , Genoma , Cabras/genética , Homozigoto , Endogamia
7.
Genet Sel Evol ; 52(1): 40, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32664855

RESUMO

BACKGROUND: Assessment of genetic diversity and population structure provides important control metrics to avoid genetic erosion, inbreeding depression and crossbreeding between exotic and locally-adapted cattle breeds since these events can have deleterious consequences and eventually lead to extinction. Historically, the Alpine Arc represents an important pocket of cattle biodiversity with a large number of autochthonous breeds that provide a fundamental source of income for the entire regional economy. By using genotype data from medium-density single nucleotide polymorphism (SNP) arrays, we performed a genome-wide comparative study of 23 cattle populations from the Alpine Arc and three cosmopolitan breeds. RESULTS: After filtering, we obtained a final genotyping dataset consisting of 30,176 SNPs for 711 individuals. The local breeds showed high or intermediate values of genetic diversity compared to the highly selected cosmopolitan breeds. Patterns of genetic differentiation, multidimensional scaling, admixture analysis and the constructed phylogenetic tree showed convergence, which indicates the presence of gene flow among the breeds according to both geographic origin and historical background. Among the most differentiated breeds, we identified the modern Brown cattle. In spite of admixture events, several local breeds have preserved distinctive characteristics, which is probably due to differences in genetic origin and geographic location. CONCLUSIONS: This study represents one of the most comprehensive genome-wide analysis of the Alpine cattle breeds to date. Using such a large dataset that includes the majority of the local breeds found in this region, allowed us to expand knowledge on the evaluation and status of Alpine cattle biodiversity. Our results indicate that although many of the analyzed local breeds are listed as endangered, they still harbor a large amount of genetic diversity, even when compared to some cosmopolitan breeds. This finding, together with the reconstruction of the phylogeny and the relationships between these Alpine Arc cattle breeds, provide crucial insights not only into the improvement of genetic stocks but also into the implementation of future conservation strategies.


Assuntos
Bovinos/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Animais , Bovinos/classificação , Evolução Molecular , Genótipo
8.
J Anim Breed Genet ; 137(6): 609-621, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32219904

RESUMO

The Valdostana is a local dual purpose cattle breed developed in Italy. Three populations are recognized within this breed, based on coat colour, production level, morphology and temperament: Valdostana Red Pied (VPR), Valdostana Black Pied (VPN) and Valdostana Chestnut (VCA). Here, we investigated putative genomic regions under selection among these three populations using the Bovine 50K SNP array by combining three different statistical methods based either on allele frequencies (FST ) or extended haplotype homozygosity (iHS and Rsb). In total, 8, 5 and 8 chromosomes harbouring 13, 13 and 16 genomic regions potentially under selection were identified by at least two approaches in VPR, VPN and VCA, respectively. Most of these candidate regions were population-specific but we found one common genomic region spanning 2.38 Mb on BTA06 which either overlaps or is located close to runs of homozygosity islands detected in the three populations. This region included inter alia two well-known genes: KDR, a well-established coat colour gene, and CLOCK, which plays a central role in positive regulation of inflammatory response and in the regulation of the mammalian circadian rhythm. The other candidate regions identified harboured genes associated mainly with milk and meat traits as well as genes involved in immune response/inflammation or associated with behavioural traits. This last category of genes was mainly identified in VCA, which is selected for fighting ability. Overall, our results provide, for the first time, a glimpse into regions of the genome targeted by selection in Valdostana cattle. Finally, this study illustrates the relevance of using multiple complementary approaches to identify genomic regions putatively under selection in livestock.


Assuntos
Comportamento Animal , Genoma/genética , Locos de Características Quantitativas/genética , Seleção Genética , Animais , Cruzamento , Bovinos , Frequência do Gene/genética , Estudos de Associação Genética , Genótipo , Haplótipos/genética , Homozigoto , Carne , Leite , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
9.
J Anim Breed Genet ; 136(6): 526-534, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31206848

RESUMO

Selective breeding has led to modifications in the genome of many livestock breeds. In this study, we identified the genomic regions that may explain some of the phenotypic differences between two closely related breeds from Sardinia. A total of 44 animals, 20 Sardinian Ancestral Black (SAB) and 24 Sardinian White (SW), were genotyped using the Illumina Ovine 50K array. A total of 68, 38 and 15 significant markers were identified using the case-control genome-wide association study (GWAS), the Bayesian population differentiation analysis (FST ) and the Rsb metric, respectively. Comparisons among the approaches revealed a total of 22 overlapping markers between GWAS and FST and one marker between GWAS and Rsb. Three markers detected by Rsb were also located near (<2 Mb) to highly significant regions identified by GWAS and FST analyses. Moreover, one candidate marker identified by GWAS and FST approaches was located in a run of homozygosity island that was shared by both breeds. We identified several genes involved in many phenotypic differences (such as stature and growth, reproduction, ear size, coat colour, behaviour) between the two analysed breeds. This study shows that combining several genome-wide approaches could improve discovery of regions involved in the variability of breeding traits and responsible for the phenotypic diversity even between closely related breeds. Overall, the combination of such genome-wide methods can be extended to other livestock breeds that share between them a similar genetic background, to understand the process that shapes the patterns of genetic variability between closely related populations.


Assuntos
Genômica , Fenótipo , Ovinos/genética , Animais , Genótipo , Homozigoto , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único
10.
Genet Sel Evol ; 50(1): 35, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29940848

RESUMO

BACKGROUND: In the last 50 years, the diversity of cattle breeds has experienced a severe contraction. However, in spite of the growing diffusion of cosmopolite specialized breeds, several local cattle breeds are still farmed in Italy. Genetic characterization of breeds represents an essential step to guide decisions in the management of farm animal genetic resources. The aim of this work was to provide a high-resolution representation of the genome-wide diversity and population structure of Italian local cattle breeds using a medium-density single nucleotide polymorphism (SNP) array. RESULTS: After quality control filtering, the dataset included 31,013 SNPs for 800 samples from 32 breeds. Our results on the genetic diversity of these breeds agree largely with their recorded history. We observed a low level of genetic diversity, which together with the small size of the effective populations, confirmed that several breeds are threatened with extinction. According to the analysis of runs of homozygosity, evidence of recent inbreeding was strong in some local breeds, such as Garfagnina, Mucca Pisana and Pontremolese. Patterns of genetic differentiation, shared ancestry, admixture events, and the phylogenetic tree, all suggest the presence of gene flow, in particular among breeds that originate from the same geographical area, such as the Sicilian breeds. In spite of the complex admixture events that most Italian cattle breeds have experienced, they have preserved distinctive characteristics and can be clearly discriminated, which is probably due to differences in genetic origin, environment, genetic isolation and inbreeding. CONCLUSIONS: This study is the first exhaustive genome-wide analysis of the diversity of Italian cattle breeds. The results are of significant importance because they will help design and implement conservation strategies. Indeed, efforts to maintain genetic diversity in these breeds are needed. Improvement of systems to record and monitor inbreeding in these breeds may contribute to their in situ conservation and, in view of this, the availability of genomic data is a fundamental resource.


Assuntos
Animais Domésticos/genética , Conservação dos Recursos Naturais/métodos , Variação Genética , Polimorfismo de Nucleotídeo Único , Animais , Cruzamento , Bovinos , Evolução Molecular , Genética Populacional , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Filogenia , Densidade Demográfica
11.
Mamm Genome ; 28(3-4): 114-128, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28255622

RESUMO

The Valdostana goat is an alpine breed, raised only in the northern Italian region of the Aosta Valley. This breed's main purpose is to produce milk and meat, but is peculiar for its involvement in the "Batailles de Chèvres," a recent tradition of non-cruel fight tournaments. At both the genetic and genomic levels, only a very limited number of studies have been performed with this breed and there are no studies about the genomic signatures left by selection. In this work, 24 unrelated Valdostana animals were screened for runs of homozygosity to identify highly homozygous regions. Then, six different approaches (ROH comparison, Fst single SNPs and windows based, Bayesian, Rsb, and XP-EHH) were applied comparing the Valdostana dataset with 14 other Italian goat breeds to confirm regions that were different among the comparisons. A total of three regions of selection that were also unique among the Valdostana were identified and located on chromosomes 1, 7, and 12 and contained 144 genes. Enrichment analyses detected genes such as cytokines and lymphocyte/leukocyte proliferation genes involved in the regulation of the immune system. A genetic link between an aggressive challenge, cytokines, and immunity has been hypothesized in many studies both in humans and in other species. Possible hypotheses associated with the signals of selection detected could be therefore related to immune-related factors as well as with the peculiar battle competition, or other breed-specific traits, and provided insights for further investigation of these unique regions, for the understanding and safeguard of the Valdostana breed.


Assuntos
Cruzamento , Genoma/genética , Cabras/genética , Seleção Genética , Animais , Genótipo , Homozigoto , Itália , Carne , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
12.
Genet Sel Evol ; 47: 64, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26272467

RESUMO

BACKGROUND: Merino and Merino-derived sheep breeds have been widely distributed across the world, both as purebred and admixed populations. They represent an economically and historically important genetic resource which over time has been used as the basis for the development of new breeds. In order to examine the genetic influence of Merino in the context of a global collection of domestic sheep breeds, we analyzed genotype data that were obtained with the OvineSNP50 BeadChip (Illumina) for 671 individuals from 37 populations, including a subset of breeds from the Sheep HapMap dataset. RESULTS: Based on a multi-dimensional scaling analysis, we highlighted four main clusters in this dataset, which corresponded to wild sheep, mouflon, primitive North European breeds and modern sheep (including Merino), respectively. The neighbor-network analysis further differentiated North-European and Mediterranean domestic breeds, with subclusters of Merino and Merino-derived breeds, other Spanish breeds and other Italian breeds. Model-based clustering, migration analysis and haplotype sharing indicated that genetic exchange occurred between archaic populations and also that a more recent Merino-mediated gene flow to several Merino-derived populations around the world took place. The close relationship between Spanish Merino and other Spanish breeds was consistent with an Iberian origin for the Merino breed, with possible earlier contributions from other Mediterranean stocks. The Merino populations from Australia, New Zealand and China were clearly separated from their European ancestors. We observed a genetic substructuring in the Spanish Merino population, which reflects recent herd management practices. CONCLUSIONS: Our data suggest that intensive gene flow, founder effects and geographic isolation are the main factors that determined the genetic makeup of current Merino and Merino-derived breeds. To explain how the current Merino and Merino-derived breeds were obtained, we propose a scenario that includes several consecutive migrations of sheep populations that may serve as working hypotheses for subsequent studies.


Assuntos
Polimorfismo de Nucleotídeo Único , Seleção Artificial/genética , Ovinos/classificação , Ovinos/genética , Animais , Austrália , China , Europa (Continente) , Efeito Fundador , Fluxo Gênico , Estudo de Associação Genômica Ampla , Nova Zelândia , Filogeografia , Dinâmica Populacional
13.
Genet Sel Evol ; 47: 62, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26239391

RESUMO

BACKGROUND: Among the European countries, Italy counts the largest number of local goat breeds. Thanks to the recent availability of a medium-density SNP (single nucleotide polymorphism) chip for goat, the genetic diversity of Italian goat populations was characterized by genotyping samples from 14 Italian goat breeds that originate from different geographical areas with more than 50 000 SNPs evenly distributed on the genome. RESULTS: Analysis of the genotyping data revealed high levels of genetic polymorphism and an underlying North-south geographic pattern of genetic diversity that was highlighted by both the first dimension of the multi-dimensional scaling plot and the Neighbour network reconstruction. We observed a moderate and weak population structure in Northern and Central-Southern breeds, respectively, with pairwise FST values between breeds ranging from 0.013 to 0.164 and 7.49 % of the total variance assigned to the between-breed level. Only 2.11 % of the variance explained the clustering of breeds into geographical groups (Northern, Central and Southern Italy and Islands). CONCLUSIONS: Our results indicate that the present-day genetic diversity of Italian goat populations was shaped by the combined effects of drift, presence or lack of gene flow and, to some extent, by the consequences of traditional management systems and recent demographic history. Our findings may constitute the starting point for the development of marker-assisted approaches, to better address future breeding and management policies in a species that is particularly relevant for the medium- and long-term sustainability of marginal regions.


Assuntos
Cabras/classificação , Cabras/genética , Polimorfismo de Nucleotídeo Único , Animais , Fluxo Gênico , Deriva Genética , Genótipo , Endogamia , Itália , Filogeografia
15.
BMC Genet ; 15: 119, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25377122

RESUMO

BACKGROUND: Success of meat production and selection for improvement of meat quality is among the primary aims in animal production. Meat quality traits are economically important in swine; however, the underlying genetic nature is very complex. Therefore, an improved pork production strongly depends on identifying and studying how genetic variations contribute to modulate gene expression. Promoters are key regions in gene modulation as they harbour several binding motifs to transcription regulatory factors. Therefore, polymorphisms in these regions are likely to deeply affect RNA levels and consequently protein synthesis. In this study, we report the identification of single nucleotide polymorphisms (SNPs) in promoter regions of candidate genes involved in development, cellular differentiation and muscle growth in Sus scrofa. We identified SNPs in the promoter regions of genes belonging to the Myogenic Regulatory Factors (MRF) gene family (the Myogenic Differentiation gene, MYOD1) and to Growth and Differentiation Factors (GDF) gene family (Myostatin gene, MSTN, GDF8), in Casertana and Large White breeds. The purpose of this study was to investigate if polymorphisms in the promoters could affect the transcriptional activity of these genes. With this aim, we evaluated in vitro the functional activity of the luciferase reporter gene luc2 activity, driven by two constructs carrying different promoter haplotypes. RESULTS: We tested the effects of the G302A (U12574) transition on the promoter efficiency in MYOD1 gene. We ascertained a difference in transcription efficiency for the two variants. A stronger activity of the A-carrying construct is more evident in C2C12. The luciferase expression driven by the MYOD1-A allelic variant displayed a 3.8-fold increased transcriptional activity. We investigated the activity of two haplotype variants (AY527152) in the promoter of GDF8 gene. The haploptype-1 (A435-A447-A879) up-regulated the expression of the reporter gene by a two-fold increase, and hence presumably of the GDF8 gene, in both CHO and C2C12 cultured cells. CONCLUSIONS: In vitro the MYOD1-A allelic variant could up-regulate the expression of MYOD1 gene. Additionally, we could assess a different response of in vitro gene expression according to cell type used to transfect constructs, suggesting that MyoD activation is regulated by mechanisms that are specific of myoblasts.


Assuntos
Desenvolvimento Muscular , Proteína MyoD/genética , Miostatina/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Animais , Células CHO , Cricetinae , Cricetulus , Qualidade dos Alimentos , Frequência do Gene , Carne , Camundongos , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Proteína MyoD/metabolismo , Miostatina/metabolismo , Fenótipo , Análise de Sequência de DNA , Sus scrofa/genética , Sus scrofa/crescimento & desenvolvimento , Transcrição Gênica , Ativação Transcricional
16.
BMC Ecol Evol ; 24(1): 29, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433185

RESUMO

The African buffalo, Syncerus caffer, is a key species in African ecosystems. Like other large herbivores, it plays a fundamental role in its habitat acting as an ecosystem engineer. Over the last few centuries, African buffalo populations have declined because of range contraction and demographic decline caused by direct or indirect human activities. In Mozambique, historically home to large buffalo herds, the combined effect of colonialism and subsequent civil wars has created a critical situation that urgently needs to be addressed. In this study, we focused on the analysis of genetic diversity of Syncerus caffer caffer populations from six areas of Mozambique. Using genome-wide SNPs obtained from ddRAD sequencing, we examined the population structure across the country, estimated gene flow between areas under conservation management, including national reserves, and assessed the inbreeding coefficients. Our results indicate that all studied populations of Syncerus caffer caffer are genetically depauperate, with a high level of inbreeding. Moreover, buffaloes in Mozambique present a significant population differentiation between southern and central areas. We found an unexpected genotype in the Gorongosa National Park, where buffaloes experienced a dramatic population size reduction, that shares a common ancestry with southern populations of Catuane and Namaacha. This could suggest the past occurrence of a connection between southern and central Mozambique and that the observed population structuring could reflect recent events of anthropogenic origin. All the populations analysed showed high levels of homozygosity, likely due to extensive inbreeding over the last few decades, which could have increased the frequency of recessive deleterious alleles. Improving the resilience of Syncerus caffer caffer in Mozambique is essential for preserving the ecosystem integrity. The most viable approach appears to be facilitating translocations and re-establishing connectivity between isolated herds. However, our results also highlight the importance of assessing intraspecific genetic diversity when considering interventions aimed at enhancing population viability such as selecting suitable source populations.


Assuntos
Bison , Búfalos , Humanos , Animais , Búfalos/genética , Ecossistema , Endogamia , Moçambique
17.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36802370

RESUMO

Aim of this study was to analyze the distribution and characteristics of runs of homozygosity in Bos taurus taurus and Bos taurus indicus breeds, as well as their crosses, farmed all around the world. With this aim in view, we used single-nucleotide polymorphisms (SNP) genotypes for 3,263 cattle belonging to 204 different breeds. After quality control, 23,311 SNPs were retained for the analysis. Animals were divided into seven different groups: 1) continental taurus, 2) temperate taurus, 3) temperate indicus, 4) temperate composite, 5) tropical taurus, 6) tropical indicus, and 7) tropical composite. The climatic zones were created according to the latitude of the breeds' country of origin: i) continental, latitude ≥ 45°; ii) temperate, 45°< Latitude >23.26°; iii) tropics, latitude ≤ 23.26°. Runs of homozygosity were computed as 15 SNPs spanning in at least 2 Mb; number of ROH per animal (nROH), average ROH length (meanMb), and ROH-based inbreeding coefficients (FROH) were also computed. Temperate indicus showed the largest nROH, whereas Temperate taurus the lowest value. Moreover, the largest meanMb was observed for Temperate taurus, whereas the lowest value for Tropics indicus. Temperate indicus breeds showed the largest FROH values. Genes mapped in the identified ROH were reported to be associated with the environmental adaptation, disease resistance, coat color determinism, and production traits. Results of the present study confirmed that runs of homozygosity could be used to identify genomic signatures due to both artificial and natural selection.


Domestication and evolution of cattle originated different modern breeds in different places worldwide. The interaction between natural and artificial selection and the adaptation to environment shaped the genome, and the three different types of cattle here considered (taurus, indicus, and composite) may harbor different selection signatures. To study the difference among types and region of origin (tropics, temperate, and continental zones), Regions of Homozygosity (ROH) were used. ROH are continuous homozygous chromosomal segments identical by descendent, which characteristics can give information about inbreeding occurrence and natural and artificial selection. Moreover, it had been investigated which genes were mapped in these regions, and if interesting differences pertaining to environmental adaptation or fitness in general, could be observed.


Assuntos
Genoma , Endogamia , Bovinos/genética , Animais , Homozigoto , Genótipo , Genômica , Polimorfismo de Nucleotídeo Único
18.
PLoS One ; 18(10): e0291814, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37851594

RESUMO

Livestock European diffusion followed different human migration waves from the Fertile Crescent. In sheep, at least two diffusion waves have shaped the current breeds' biodiversity generating a complex genetic pattern composed by either primitive or fine-wool selected breeds. Nowadays most of the sheep European breeds derive from the second wave which is supposed to have largely replaced oldest genetic signatures, with the exception of several primitive breeds confined on the very edge of Northern Europe. Despite this, some populations also in the Mediterranean region are characterised by the presence of phenotypic traits considered ancestral such as the policeraty, large horns in the ram, short tail, and a moulting fleece. Italy is home of a large number of local breeds, albeit some are already extinct, others are listed as critically endangered, and among these there is the Quadricorna breed which is a four-horned sheep characterised by several traits considered as ancestral. In this context we genotyped 47 individuals belonging to the Quadricorna sheep breed, a relict and endangered breed, from Central and Southern Italy. In doing so we used the Illumina OvineSNP50K array in order to explore its genetic diversity and to compare it with other 41 breeds from the Mediterranean region and Middle-East, with the specific aim to reconstruct its origin. After retaining 32,862 SNPs following data filtering, the overall genomic architecture has been explored by using genetic diversity indices, Principal Component Analysis (PCA) and admixture analysis, while the genetic relationships and migration events have been inferred using a neighbor-joining tree based on Reynolds' distances and by the maximum likelihood tree as implemented in treemix. The Quadricorna breed exhibit genetic diversity indices comparable with those of most of the other analysed breeds, however, the two populations showed opposing patterns of genetic diversity suggesting different levels of genomic inbreeding and drift (FIS and FROH). In general, all the performed genome-wide analyses returned complementary results, indicating a westward longitudinal cline compatible with human migrations from the Middle-East and several additional genetic footprints which might mirror more recent historical events. Interestingly, among the Italian breeds, the original Quadricorna (QUAD_SA) first separated showing its own ancestral component. In addition, the admixture analysis does not suggest any signal of recent gene exchange with other Italian local breeds, highlighting a rather ancestral purity of this population. On the other hand, both the neighbor-joining tree and the treemix analysis seem to suggest a proximity of the Quadricorna populations to breeds of South-Eastern Mediterranean origin. Although our results do not support a robust link between the genetics of the first wave and the presence of primitive traits, the observed genetic uniqueness together with the inferred phylogeograpic reconstruction would suggest an ancient presence of the Quadricorna breed in the Italian Peninsula. Because of this singularity, urgent conservation actions are needed in order to keep the breed and all related cultural products alive.


Assuntos
Variação Genética , Estudo de Associação Genômica Ampla , Ovinos/genética , Masculino , Animais , Humanos , Genoma , Endogamia , Genótipo , Região do Mediterrâneo , Polimorfismo de Nucleotídeo Único
20.
Electrophoresis ; 33(15): 2337-44, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22887154

RESUMO

A genetic survey on three autochthonous goat breeds reared in Italy was carried out by a proteomic approach. This methodology, further to providing the phenotypic frequency of identified α(s1) genetic variants, allowed to determine (i) the additional constitutive presence of a non-allelic 'α(s1) -casein (CN) F like' protein in goat 'strong' α(s1) variants; (ii) an α(s1) -CN B(2) like protein, expressed at very low quantitative level, in goat 'weak' α(s1) -CN variants, and, as main focus; (iii) the occurrence of a new α(s1) -CN D(1) variant characterised by the lack of α(s1) (f59-69) sequence otherwise encoded by exon 9 in goat α(s1) B(2) reference. The same exon skipping event had been identified since 1990, as responsible of the 'weak quantitative class' of α(s1) -CN D variant (0.6 g/L), while the new α(s1) -CN D(1,) has been 'quantitatively' classified as an 'intermediate' variant, since 1.8 g/L per allele was assessed in the milk.


Assuntos
Caseínas/genética , Cabras/genética , Sequência de Aminoácidos , Animais , Caseínas/análise , Caseínas/química , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Eletroforese em Gel Bidimensional , Éxons , Immunoblotting , Espectrometria de Massas/métodos , Polimorfismo Genético , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA