Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Psychiatry ; 28(9): 3966-3981, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37907591

RESUMO

Accumulation of amyloid ß-peptide (Aß) is a driver of Alzheimer's disease (AD). Amyloid precursor protein (App) knock-in mouse models recapitulate AD-associated Aß pathology, allowing elucidation of downstream effects of Aß accumulation and their temporal appearance upon disease progression. Here we have investigated the sequential onset of AD-like pathologies in AppNL-F and AppNL-G-F knock-in mice by time-course transcriptome analysis of hippocampus, a region severely affected in AD. Strikingly, energy metabolism emerged as one of the most significantly altered pathways already at an early stage of pathology. Functional experiments in isolated mitochondria from hippocampus of both AppNL-F and AppNL-G-F mice confirmed an upregulation of oxidative phosphorylation driven by the activity of mitochondrial complexes I, IV and V, associated with higher susceptibility to oxidative damage and Ca2+-overload. Upon increasing pathologies, the brain shifts to a state of hypometabolism with reduced abundancy of mitochondria in presynaptic terminals. These late-stage mice also displayed enlarged presynaptic areas associated with abnormal accumulation of synaptic vesicles and autophagosomes, the latter ultimately leading to local autophagy impairment in the synapses. In summary, we report that Aß-induced pathways in App knock-in mouse models recapitulate key pathologies observed in AD brain, and our data herein adds a comprehensive understanding of the pathologies including dysregulated metabolism and synapses and their timewise appearance to find new therapeutic approaches for AD.


Assuntos
Doença de Alzheimer , Aplicativos Móveis , Animais , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Autofagia/genética , Modelos Animais de Doenças , Camundongos Transgênicos
2.
J Cell Mol Med ; 20(9): 1686-95, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27203684

RESUMO

Mitochondria are physically and biochemically in contact with other organelles including the endoplasmic reticulum (ER). Such contacts are formed between mitochondria-associated ER membranes (MAM), specialized subregions of ER, and the outer mitochondrial membrane (OMM). We have previously shown increased expression of MAM-associated proteins and enhanced ER to mitochondria Ca(2+) transfer from ER to mitochondria in Alzheimer's disease (AD) and amyloid ß-peptide (Aß)-related neuronal models. Here, we report that siRNA knockdown of mitofusin-2 (Mfn2), a protein that is involved in the tethering of ER and mitochondria, leads to increased contact between the two organelles. Cells depleted in Mfn2 showed increased Ca(2+) transfer from ER to mitchondria and longer stretches of ER forming contacts with OMM. Interestingly, increased contact resulted in decreased concentrations of intra- and extracellular Aß40 and Aß42 . Analysis of γ-secretase protein expression, maturation and activity revealed that the low Aß concentrations were a result of impaired γ-secretase complex function. Amyloid-ß precursor protein (APP), ß-site APP-cleaving enzyme 1 and neprilysin expression as well as neprilysin activity were not affected by Mfn2 siRNA treatment. In summary, our data shows that modulation of ER-mitochondria contact affects γ-secretase activity and Aß generation. Increased ER-mitochondria contact results in lower γ-secretase activity suggesting a new mechanism by which Aß generation can be controlled.


Assuntos
Peptídeos beta-Amiloides/biossíntese , Retículo Endoplasmático/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Técnicas de Silenciamento de Genes , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Trifosfato de Adenosina/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cálcio/metabolismo , Regulação para Baixo , Retículo Endoplasmático/ultraestrutura , Células HEK293 , Humanos , Mitocôndrias/ultraestrutura , RNA Interferente Pequeno/metabolismo
3.
Proc Natl Acad Sci U S A ; 110(19): 7916-21, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23620518

RESUMO

It is well-established that subcompartments of endoplasmic reticulum (ER) are in physical contact with the mitochondria. These lipid raft-like regions of ER are referred to as mitochondria-associated ER membranes (MAMs), and they play an important role in, for example, lipid synthesis, calcium homeostasis, and apoptotic signaling. Perturbation of MAM function has previously been suggested in Alzheimer's disease (AD) as shown in fibroblasts from AD patients and a neuroblastoma cell line containing familial presenilin-2 AD mutation. The effect of AD pathogenesis on the ER-mitochondria interplay in the brain has so far remained unknown. Here, we studied ER-mitochondria contacts in human AD brain and related AD mouse and neuronal cell models. We found uniform distribution of MAM in neurons. Phosphofurin acidic cluster sorting protein-2 and σ1 receptor, two MAM-associated proteins, were shown to be essential for neuronal survival, because siRNA knockdown resulted in degeneration. Up-regulated MAM-associated proteins were found in the AD brain and amyloid precursor protein (APP)Swe/Lon mouse model, in which up-regulation was observed before the appearance of plaques. By studying an ER-mitochondria bridging complex, inositol-1,4,5-triphosphate receptor-voltage-dependent anion channel, we revealed that nanomolar concentrations of amyloid ß-peptide increased inositol-1,4,5-triphosphate receptor and voltage-dependent anion channel protein expression and elevated the number of ER-mitochondria contact points and mitochondrial calcium concentrations. Our data suggest an important role of ER-mitochondria contacts and cross-talk in AD pathology.


Assuntos
Doença de Alzheimer/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Receptor Cross-Talk , Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Células CHO , Cálcio/metabolismo , Linhagem Celular Tumoral , Cricetinae , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Hipocampo/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato , Microdomínios da Membrana/metabolismo , Camundongos , Mutação , Neurônios/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores sigma/metabolismo , Frações Subcelulares/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Receptor Sigma-1
4.
Biochim Biophys Acta ; 1837(7): 1069-74, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24561226

RESUMO

Mitochondrial dysfunctions associated with amyloid-ß peptide (Aß) accumulation in mitochondria have been observed in Alzheimer's disease (AD) patients' brains and in AD mice models. Aß is produced by sequential action of ß- and γ-secretases cleaving the amyloid precursor protein (APP). The γ-secretase complex was found in mitochondria-associated endoplasmic reticulum membranes (MAM) suggesting that this could be a potential site of Aß production, from which Aß is further transported into the mitochondria. In vitro, Aß was shown to be imported into the mitochondria through the translocase of the outer membrane (TOM) complex. The mitochondrial presequence protease (PreP) is responsible for Aß degradation reducing toxic effects of Aß on mitochondrial functions. The proteolytic activity of PreP is, however, lower in AD brain temporal lobe mitochondria and in AD transgenic mice models, possibly due to an increased reactive oxygen species (ROS) production. Here, we review the intracellular mechanisms of Aß production, its mitochondrial import and the intra-mitochondrial degradation. We also discuss the implications of a reduced efficiency of mitochondrial Aß clearance for AD. Understanding the underlying mechanisms may provide new insights into mitochondria related pathogenesis of AD and development of drug therapy against AD. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Mitocôndrias/metabolismo , Doença de Alzheimer/metabolismo , Animais , Humanos , Transporte Proteico , Proteólise
5.
Curr Biol ; 28(3): 369-382.e6, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29395920

RESUMO

The mitochondrial translocase of the outer membrane (TOM) is a protein complex that is essential for the post-translational import of nuclear-encoded mitochondrial proteins. Among its subunits, TOM70 and TOM20 are only transiently associated with the core complex, suggesting their possible additional roles within the outer mitochondrial membrane (OMM). Here, by using different mammalian cell lines, we demonstrate that TOM70, but not TOM20, clusters in distinct OMM foci, frequently overlapping with sites in which the endoplasmic reticulum (ER) contacts mitochondria. Functionally, TOM70 depletion specifically impairs inositol trisphosphates (IP3)-linked ER to mitochondria Ca2+ transfer. This phenomenon is dependent on the capacity of TOM70 to interact with IP3-receptors and favor their functional recruitment close to mitochondria. Importantly, the reduced constitutive Ca2+ transfer to mitochondria, observed in TOM70-depleted cells, dampens mitochondrial respiration, affects cell bioenergetics, induces autophagy, and inhibits proliferation. Our data reveal a hitherto unexpected role for TOM70 in pro-survival ER-mitochondria communication, reinforcing the view that the ER-mitochondria signaling platform is a key regulator of cell fate.


Assuntos
Cálcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Membranas Mitocondriais/metabolismo , Receptores de Superfície Celular/genética , Animais , Retículo Endoplasmático/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Receptores de Superfície Celular/metabolismo
6.
Cell Metab ; 20(4): 662-9, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25176146

RESUMO

Most mitochondrial proteins possess N-terminal presequences that are required for targeting and import into the organelle. Upon import, presequences are cleaved off by matrix processing peptidases and subsequently degraded by the peptidasome Cym1/PreP, which also degrades Amyloid-beta peptides (Aß). Here we find that impaired turnover of presequence peptides results in feedback inhibition of presequence processing enzymes. Moreover, Aß inhibits degradation of presequence peptides by PreP, resulting in accumulation of mitochondrial preproteins and processing intermediates. Dysfunctional preprotein maturation leads to rapid protein degradation and an imbalanced organellar proteome. Our findings reveal a general mechanism by which Aß peptide can induce the multiple diverse mitochondrial dysfunctions accompanying Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Metaloproteases/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina Endopeptidases/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Humanos , Metaloproteases/antagonistas & inibidores , Metaloproteases/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/antagonistas & inibidores , Mutação , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Superóxido Dismutase/metabolismo
7.
J Alzheimers Dis ; 31(3): 527-36, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22596268

RESUMO

The apolipoprotein E (APOE) gene remains the most strongly established risk factor for late onset Alzheimer's disease (LOAD). Recently the gene, TOMM40, which is in linkage disequilibrium with APOE, was identified to be associated with LOAD in genome-wide association studies. One of the identified polymorphisms in TOMM40 is rs10524523, which is located in intron 6 and composed of thymidine repeats varying between 14 to 36 base-pairs in length. Reported results are contradictory in regard to the very long poly-T variant that has been associated with both increased and decreased risk of LOAD. Our study aimed to elucidate the functional implication of rs10524523 in an in vitro model of human fibroblast cells obtained from cognitively healthy APOE ε3/ε4 carriers harboring very long or short poly-T variants coupled to their APOE ε3 allele. We have studied (i) expression levels of TOM40 protein and mRNA, (ii) TOM40 mRNA splicing, and (iii) mitochondrial function and morphology; and we have found no significant differences in regards to very long or short poly-T variant.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Variação Genética/genética , Proteínas de Membrana Transportadoras/genética , Poli T/genética , Adulto , Células Cultivadas , Bases de Dados Factuais , Feminino , Fibroblastos/química , Fibroblastos/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial
8.
Free Radic Biol Med ; 53(11): 2188-95, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23041349

RESUMO

The mitochondrial peptidasome called presequence protease (PreP) is responsible for the degradation of presequences and other unstructured peptides including the amyloid-ß peptide, whose accumulation may have deleterious effects on mitochondrial function. Recent studies showed that PreP activity is reduced in Alzheimer disease (AD) patients and AD mouse models compared to controls, which correlated with an enhanced reactive oxygen species production in mitochondria. In this study, we have investigated the effects of a biologically relevant oxidant, hydrogen peroxide (H(2)O(2)), on the activity of recombinant human PreP (hPreP). H(2)O(2) inhibited hPreP activity in a concentration-dependent manner, resulting in oxidation of amino acid residues (detected by carbonylation) and lowered protein stability. Substitution of the evolutionarily conserved methionine 206 for leucine resulted in increased sensitivity of hPreP to oxidation, indicating a possible protective role of M206 as internal antioxidant. The activity of hPreP oxidized at low concentrations of H(2)O(2) could be restored by methionine sulfoxide reductase A (MsrA), an enzyme that localizes to the mitochondrial matrix, suggesting that hPreP constitutes a substrate for MsrA. In summary, our in vitro results suggest a possible redox control of hPreP in the mitochondrial matrix and support the protective role of the conserved methionine 206 residue as an internal antioxidant.


Assuntos
Proteínas Mitocondriais/química , Serina Endopeptidases/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Domínio Catalítico , Sequência Conservada , Humanos , Peróxido de Hidrogênio/química , Cinética , Metionina Sulfóxido Redutases/química , Proteínas Mitocondriais/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oxidantes/química , Oxirredução , Fragmentos de Peptídeos/química , Proteólise , Serina Endopeptidases/genética
9.
J Alzheimers Dis ; 27(1): 75-87, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21750375

RESUMO

Accumulation of amyloid-ß peptide (Aß), the neurotoxic peptide implicated in the pathogenesis of Alzheimer's disease (AD), has been shown in brain mitochondria of AD patients and of AD transgenic mouse models. The presence of Aß in mitochondria leads to free radical generation and neuronal stress. Recently, we identified the presequence protease, PreP, localized in the mitochondrial matrix in mammalian mitochondria as the novel mitochondrial Aß-degrading enzyme. In the present study, we examined PreP activity in the mitochondrial matrix of the human brain's temporal lobe, an area of the brain highly susceptible to Aß accumulation and reactive oxygen species (ROS) production. We found significantly lower hPreP activity in AD brains compared with non-AD age-matched controls. By contrast, in the cerebellum, a brain region typically spared from Aß accumulation, there was no significant difference in hPreP activity when comparing AD samples to non-AD controls. We also found significantly reduced PreP activity in the mitochondrial matrix of AD transgenic mouse brains (Tg mAßPP and Tg mAßPP/ABAD) when compared to non-transgenic aged-matched mice. Furthermore, mitochondrial fractions isolated from AD brains and Tg mAßPP mice had higher levels of 4-hydroxynonenal, an oxidative product, as compared with those from non-AD and nonTg mice. Accordingly, activity of cytochrome c oxidase was significantly reduced in the AD mitochondria. These findings suggest that decreased PreP proteolytic activity, possibly due to enhanced ROS production, contributes to Aß accumulation in mitochondria leading to the mitochondrial toxicity and neuronal death that is exacerbated in AD. Clearance of mitochondrial Aß by PreP may thus be of importance in the pathology of AD.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/ultraestrutura , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Serina Endopeptidases/metabolismo , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Aldeídos/metabolismo , Peptídeos beta-Amiloides/metabolismo , Análise de Variância , Animais , Encéfalo/patologia , Estudos de Casos e Controles , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Mitocôndrias/patologia , Fragmentos de Peptídeos/metabolismo
10.
Neurosci Lett ; 469(2): 204-8, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19962426

RESUMO

Several studies suggest mitochondrial dysfunction as a possible mechanism underlying the development of Alzheimer disease (AD). There is data showing that amyloid-beta (A beta) peptide is present in AD brain mitochondria. The human presequence protease (hPreP) was recently shown to be the major mitochondrial A beta-degrading enzyme. We investigated if there is an increased susceptibility to AD, which can be attributed to genetic variation in the hPreP gene PITRM1 and if the proteolytic efficiency of recombinant hPreP variants is affected. When a total of 673 AD cases and 649 controls were genotyped for 18 single nucleotide polymorphisms (SNPs), no genetic association between any of the SNPs and the risk for AD was found. In contrast, functional analysis of four non-synonymous SNPs in hPreP revealed a decreased activity compared to wild type hPreP. Using A beta, the presequence of ATP synthase F(1)beta subunit and a fluorescent peptide as substrates, the lowest activity was observed for the hPreP(A525D) variant, corresponding to rs1224893, which displayed only 20-30% of wild type activity. Furthermore, the activity of all variants was restored by the addition of Mg(2+), suggesting an important role for this metal during proteolysis. In conclusion, our data suggest that genetic variation in the hPreP gene PITRM1 may potentially contribute to mitochondrial dysfunctions.


Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença , Metaloendopeptidases/genética , Polimorfismo de Nucleotídeo Único , Idoso , Alelos , Peptídeos beta-Amiloides/metabolismo , Estudos de Casos e Controles , Feminino , Frequência do Gene , Estudos de Associação Genética , Humanos , Desequilíbrio de Ligação , Magnésio/metabolismo , Masculino , Metaloendopeptidases/metabolismo , Modelos Moleculares , Fragmentos de Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA