Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Appl Environ Microbiol ; 89(11): e0121923, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37902315

RESUMO

IMPORTANCE: The COVID-19 pandemic spurred research on the persistence of SARS-CoV-2 and its surrogates. Here we highlight the importance of evaluating viral surrogates and experimental methodologies when studying pathogen survival in the environment.


Assuntos
Bacteriófagos , COVID-19 , Humanos , SARS-CoV-2 , Água , Pandemias
2.
Environ Sci Technol ; 53(5): 2852-2861, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30689351

RESUMO

Sustainable Development Goal (SDG) Indicator 6.2.1 requires household handwashing facilities to have soap and water, but there are no guidelines for handwashing water quality. In contrast, drinking water quality guidelines are defined: water must be "free from contamination" to be defined as "safely managed" (SDG Indicator 6.1.1). We modeled the hypothesized mechanism of infection due to contaminated handwashing water to inform risk-based guidelines for microbial quality of handwashing water. We defined two scenarios that should not occur: (1) if handwashing caused fecal contamination, indicated using Escherichia coli, on a person's hands to increase rather than decrease and (2) if hand-to-mouth contacts following handwashing caused an infection risk greater than an acceptable threshold. We found water containing <1000 E. coli colony-forming units (CFU) per 100 mL removes E. coli from hands with>99.9% probability. However, for the annual probability of infection to be <1:1000, handwashing water must contain <2 × 10-6 focus-forming units of rotavirus, <1 × 10-4 CFU of Vibrio cholerae, and <9 × 10-6 Cryptosporidium oocysts per 100 mL. Our model suggests that handwashing with nonpotable water will generally reduce fecal contamination on hands but may be unable to lower the annual probability of infection risks from hand-to-mouth contacts below 1:1000.


Assuntos
Desinfecção das Mãos , Qualidade da Água , Escherichia coli , Higiene , Sabões
3.
Appl Environ Microbiol ; 84(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30217840

RESUMO

Indirect exposure to waterborne viruses increases the risk of infection, especially among children with frequent hand-to-mouth contacts. Here, we quantified the transfer of one bacteriophage (MS2) and two enteric viruses (adenovirus and coxsackievirus) from liquid to skin. MS2, a commonly used enteric virus surrogate, was used to compare virus transfer rates in a volunteer trial to those obtained using human cadaver skin and synthetic skin. MS2 transfer to volunteer skin was similar to transfer to cadaver skin but significantly different from transfer to synthetic skin. The transfer of MS2, adenovirus, and coxsackievirus to cadaver skin was modeled using measurements for viruses attaching to the skin (adsorbed) and viruses in liquid residual on skin (unadsorbed). We find virus transfer per surface area is a function of the concentration of virus in the liquid and the film thickness of liquid retained on the skin and is estimable using a linear model. Notably, the amount of MS2 adsorbed on the skin was on average 5 times higher than the amount of adenovirus and 4 times higher than the amount of coxsackievirus. Quantification of pathogenic virus retention to skin would thus be overestimated using MS2 adsorption data. This study provides models of virus transfer useful for risk assessments of water-related activities, demonstrates significant differences in the transfer of pathogenic virus and MS2, and suggests cadaver skin as an alternative testing system for studying interactions between viruses and skin.IMPORTANCE Enteric viruses (viruses that infect the gastrointestinal tract) are responsible for most water-transmitted diseases. They are shed in high concentrations in the feces of infected individuals, persist for an extended period of time in water, and are highly infective. Exposure to contaminated water directly (through ingestion) or indirectly (for example, through hand-water contacts followed by hand-to-mouth contacts) increases the risk of virus transmission. The work described herein provides a quantitative model for estimating human-pathogenic virus retention on skin following contact with contaminated water. The work will be important in refining the contribution of indirect transmission of virus to risks associated with water-related activities.


Assuntos
Adenoviridae/fisiologia , Bacteriófagos/fisiologia , Enterovirus/fisiologia , Água Doce/virologia , Pele/virologia , Ligação Viral , Viroses/virologia , Humanos , Viroses/transmissão , Poluição da Água
5.
PLoS Negl Trop Dis ; 16(10): e0010820, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36191022

RESUMO

BACKGROUND: Schistosomiasis is a parasitic disease that is endemic in 78 countries and affects almost 240 million people worldwide. It has been acknowledged that an integrated approach that goes beyond drug treatment is needed to achieve control and eventual elimination of the disease. Improving hygiene has been encouraged by World Health Organisation, and one aspect of good hygiene is using soap during water-contact activities, such as bathing and doing laundry. This hygiene practice might directly reduce the skin exposure to cercariae at transmission sites. A systematic review was carried out to investigate the efficacy of soap against schistosome cercariae and to identify the knowledge gaps surrounding this topic. METHODOLOGY: Six online databases were searched between 5th and 8th July of 2021. Records returned from these databases were screened to remove duplicates, and the remaining records were classified by reading titles, abstracts, and full texts to identify the included studies. The results were categorised into two groups based on two different protective mechanisms of soap (namely, damage to cercariae and protection of skin). CONCLUSIONS: Limited research has been conducted on the efficacy of soap against schistosome cercariae and only 11 studies met the criteria to be included in this review. The review demonstrates that soap has the potential of protecting people against schistosome cercariae and there are two protective aspects: (1) soap affects cercariae adversely; (2) soap on the skin prevents cercariae from penetrating the skin, developing into adult worms and producing eggs. Both aspects of protection were influenced by many factors, but the differences in the reported experimental conditions, such as the cercarial endpoint measurement used and the cercaria numbers used per water sample, lead to low comparability between the previous studies. This review indicates that more evidence is needed to inform hygiene advice for people living in schistosomiasis endemic areas.


Assuntos
Esquistossomose , Sabões , Animais , Cercárias , Schistosoma , Esquistossomose/parasitologia , Esquistossomose/prevenção & controle , Água/parasitologia
6.
J Med Microbiol ; 71(2)2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35180046

RESUMO

Introduction. The importance of human saliva in aerosol-based transmission of SARS-CoV-2 is now widely recognized. However, little is known about the efficacy of virucidal mouthwash formulations against emergent SARS-CoV-2 variants of concern and in the presence of saliva.Hypothesis. Mouthwashes containing virucidal actives will have similar inactivation effects against multiple SARS-CoV-2 variants of concern and will retain efficacy in the presence of human saliva.Aim. To examine in vitro efficacy of mouthwash formulations to inactivate SARS-CoV-2 variants.Methodology. Inactivation of SARS-CoV-2 variants by mouthwash formulations in the presence or absence of human saliva was assayed using ASTM International Standard E1052-20 methodology.Results. Appropriately formulated mouthwashes containing 0.07 % cetylpyridinium chloride but not 0.2 % chlorhexidine completely inactivated SARS-CoV-2 (USA-WA1/2020, Alpha, Beta, Gamma, Delta) up to the limit of detection in suspension assays. Tests using USA-WA1/2020 indicates that efficacy is maintained in the presence of human saliva.Conclusions. Together these data suggest cetylpyridinium chloride-based mouthwashes are effective at inactivating SARS-CoV-2 variants. This indicates potential to reduce viral load in the oral cavity and mitigate transmission via salivary aerosols.


Assuntos
Cetilpiridínio , Antissépticos Bucais , SARS-CoV-2 , Saliva , COVID-19 , Cetilpiridínio/farmacologia , Humanos , Antissépticos Bucais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Saliva/virologia
7.
Environ Sci Technol Lett ; 8(3): 263-269, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-37566313

RESUMO

SARS-CoV-2, the virus responsible for the COVID-19 pandemic, is perceived to be primarily transmitted via person-to-person contact through droplets produced while talking, coughing, and sneezing. Transmission may also occur through other routes, including contaminated surfaces; nevertheless, the role that surfaces have on the spread of the disease remains contested. Here, we use the Quantitative Microbial Risk Assessment framework to examine the risks of community transmission of SARS-CoV-2 through surfaces and to evaluate the effectiveness of hand and surface disinfection as potential interventions. Using conservative assumptions on input parameters of the model (e.g., dose-response relationship, ratio of genome copies to infective virus), the average of the median risks for single hand-to-surface contact followed by hand-to-face contact range from 1.6 × 10-4 to 5.6 × 10-9 for modeled prevalence rates of 0.2%-5%. For observed prevalence rates (0.2%, 1%), this corresponds to a low risk of infection (<10-6). Hand disinfection substantially reduces risks of transmission independently of the disease's prevalence and contact frequency. In contrast, the effectiveness of surface disinfection is highly dependent on the prevalence and the frequency of contacts. The work supports the current perception that contaminated surfaces are not a primary mode of transmission of SARS-CoV-2 and affirms the benefits of making hand disinfectants widely available.

8.
Environ Sci Technol Lett ; 8(2): 168-175, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-34192125

RESUMO

Environmental surveillance of surface contamination is an unexplored tool for understanding transmission of SARS-CoV-2 in community settings. We conducted longitudinal swab sampling of high-touch non-porous surfaces in a Massachusetts town during a COVID-19 outbreak from April to June 2020. Twenty-nine of 348 (8.3%) surface samples were positive for SARS-CoV-2 RNA, including crosswalk buttons, trash can handles, and door handles of essential business entrances (grocery store, liquor store, bank, and gas station). The estimated risk of infection from touching a contaminated surface was low (less than 5 in 10,000) by quantitative microbial risk assessment, suggesting fomites play a minimal role in SARS-CoV-2 community transmission. The weekly percentage of positive samples (out of n = 33 unique surfaces per week) best predicted variation in city-level COVID-19 cases with a 7-day lead time. Environmental surveillance of SARS-CoV-2 RNA on high-touch surfaces may be a useful tool to provide early warning of COVID-19 case trends.

9.
PLoS One ; 15(9): e0238998, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32941473

RESUMO

The frequent contact people have with liquids containing pathogenic microorganisms provides opportunities for disease transmission. In this work, we quantified the transfer of bacteria-using E. coli as a model- from liquid to skin, estimated liquid retention on the skin after different contact activities (hand immersion, wet-cloth and wet-surface contact), and estimated liquid transfer following hand-to-mouth contacts. The results of our study show that the number of E. coli transferred to the skin per surface area (n [E. coli/cm2]) can be modeled using n = C (10-3.38+h), where C [E. coli/cm3] is the concentration of E. coli in the liquid, and h [cm] is the film thickness of the liquid retained on the skin. Findings from the E. coli transfer experiments reveal a significant difference between the transfer of E. coli from liquid to the skin and the previously reported transfer of viruses to the skin. Additionally, our results demonstrate that the time elapsed since the interaction significantly influences liquid retention, therefore modulating the risks associated with human interaction with contaminated liquids. The findings enhance our understanding of liquid-mediated disease transmission processes and provide quantitative estimates as inputs for microbial risk assessments.


Assuntos
Adsorção/fisiologia , Dermatopatias Bacterianas/transmissão , Pele/microbiologia , Fenômenos Biológicos , Transmissão de Doença Infecciosa/prevenção & controle , Escherichia coli/patogenicidade , Mãos , Humanos , Modelos Teóricos , Água/química , Microbiologia da Água
10.
Antimicrob Resist Infect Control ; 9(1): 152, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938493

RESUMO

BACKGROUND: The increase in antimicrobial resistance is of worldwide concern. Surrogate tracers attempt to simulate microbial transmission by avoiding the infectious risks associated with live organisms. We evaluated silica nanoparticles with encapsulated DNA (SPED) as a new promising surrogate tracer in healthcare. METHODS: SPED and Escherichia coli were used to implement three experiments in simulation rooms and a microbiology laboratory in 2017-2018. Experiment 1 investigated the transmission behaviour of SPED in a predefined simulated patient-care scenario. SPED marked with 3 different DNA sequences (SPED1-SPED3) were introduced at 3 different points of the consecutive 13 touch sites of a patient-care scenario that was repeated 3 times, resulting in a total of 288 values. Experiment 2 evaluated SPED behaviour following hand cleaning with water and soap and alcohol-based handrub. Experiment 3 compared transfer dynamics of SPED versus E. coli in a laboratory using a gloved finger touching two consecutive sites on a laminate surface after a first purposefully contaminated site. RESULTS: Experiment 1: SPED adhesiveness on bare skin after a hand-to-surface exposure was high, leading to a dissemination of SPED1-3 on all consecutive surface materials with a trend of decreasing recovery rates, also reflecting touching patterns in concordance with contaminated fingers versus palms. Experiment 2: Hand washing with soap and water resulted in a SPED reduction of 96%, whereas hand disinfection led to dispersal of SPED from the palm to the back of the hand. Experiment 3: SPED and E. coli concentration decreased in parallel with each transmission step - with SPED showing a trend for less reduction and variability. CONCLUSIONS: SPED represent a convenient and safe instrument to simulate pathogen spread by contact transmission simultaneously from an infinite number of sites. They can be further developed as a central asset for successful infection prevention in healthcare.


Assuntos
Infecção Hospitalar/transmissão , DNA/análise , Dióxido de Silício/química , Simulação por Computador , Infecção Hospitalar/prevenção & controle , DNA/química , Resistência Microbiana a Medicamentos , Microbiologia Ambiental , Contaminação de Equipamentos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Desinfecção das Mãos/métodos , Humanos , Nanopartículas
11.
medRxiv ; 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33140065

RESUMO

Environmental surveillance of surface contamination is an unexplored tool for understanding transmission of SARS-CoV-2 in community settings. We conducted longitudinal swab sampling of high-touch non-porous surfaces in a Massachusetts town during a COVID-19 outbreak from April to June 2020. Twenty-nine of 348 (8.3 %) surface samples were positive for SARS-CoV-2, including crosswalk buttons, trash can handles, and door handles of essential business entrances (grocery store, liquor store, bank, and gas station). The estimated risk of infection from touching a contaminated surface was low (less than 5 in 10,000), suggesting fomites play a minimal role in SARS-CoV-2 community transmission. The weekly percentage of positive samples (out of n=33 unique surfaces per week) best predicted variation in city-level COVID-19 cases using a 7-day lead time. Environmental surveillance of SARS-CoV-2 RNA on high-touch surfaces could be a useful tool to provide early warning of COVID-19 case trends.

12.
Sci Total Environ ; 635: 120-131, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29660716

RESUMO

Infectious disease transmission is frequently mediated by the environment, where people's movements through and interactions with the environment dictate risks of infection and/or illness. Capturing these interactions, and quantifying their importance, offers important insights into effective interventions. In this study, we capture high time-resolution activity data for twenty-five Vietnamese farmers during collection and land application of human excreta for agriculture. Although human excreta use improves productivity, the use increases risks of enteric infections for both farmers and end users. In our study, the activity data are integrated with environmental microbial sampling data into a stochastic-mechanistic simulation of E. coli contamination on hands and E. coli ingested. Results from the study include frequent and variable contact rates for farmers' hands (from 34 to 1344 objects contacted per hour per hand), including highly variable hand-to-mouth contact rates (from 0 to 9 contacts per hour per hand). The frequency of hand-to-mouth contacts was substantially lower than the widely-used frequency previously reported for U.S. Office Workers. Environmental microbial contamination data highlighted ubiquitous E. coli contamination in the environment, including excreta, hands, toilet pit, handheld tools, soils, surfaces, and water. Results from the simulation suggest dynamic changes in E. coli contamination on hands, and wide variation in hand contamination and E. coli ingested amongst the farmers studied. Sensitivity analysis suggests that E. coli contamination on hands and ingested doses are most influenced by contamination of handheld tools, excreta, and the toilet pit as well as by frequency of hand-to-mouth contacts. The study findings are especially relevant given the context: no farmers reported adequate storage time of human excreta, and personal protective mask availability did not prevent hand-to-mouth contacts. Integrating high time-resolution activity data into exposure assessments highlights variation in exposures amongst farmers, and offers greater insight into effective interventions and their potential impacts.


Assuntos
Escherichia coli/isolamento & purificação , Fazendeiros , Fezes/microbiologia , Mãos/microbiologia , Adulto , Agricultura/métodos , Fazendeiros/estatística & dados numéricos , Feminino , Fertilizantes/microbiologia , Humanos , Masculino , Pessoa de Meia-Idade , Vietnã
13.
J Biotechnol ; 216: 67-75, 2015 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-26476358

RESUMO

The High Five (H5) cell line, derived from the lepidopteran Trichoplusia ni, is one of the major insect cell hosts for the production of recombinant proteins using the baculovirus expression vector system (BEVS). Here, we describe a simple polyethylenimine (PEI)-based transient gene expression (TGE) process for the rapid production of recombinant proteins from suspension-adapted H5 cells. The method was optimized using two model proteins, enhanced green fluorescent protein (EGFP) and human tumor necrosis factor receptor-Fc fusion protein (TNFR-Fc). After screening several promoter and enhancer combinations for high levels of TNFR:Fc production, an expression vector containing the Autographa californica multicapsid nucleopolyhedrovirus immediate early 1 (ie1) promoter and homologous region 5 (hr5) enhancer was selected. Cells were transfected at a density of 2×10(6) cells/mL by direct addition of DNA and PEI. Under optimized conditions, a 90% transfection efficiency (percentage of EGFP-positive cells) was obtained. In addition, we observed volumetric TNFR-Fc yields over 150µg/mL within 4 days of transfection. The method was found to be reproducible and scalable to 300mL. This plasmid-based transient transfection process is a simple and efficient alternative to the BEVS for recombinant protein production in H5 cells.


Assuntos
Expressão Gênica , Lepidópteros/citologia , Plasmídeos/metabolismo , Transfecção/métodos , Animais , Contagem de Células , Linhagem Celular , DNA/metabolismo , Humanos , Polietilenoimina/química , Regiões Promotoras Genéticas , Reprodutibilidade dos Testes , Suspensões , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA