Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39275435

RESUMO

Non-toroidal-shaped primary pass-through protection current transformers (CTs) are used to measure high currents. Their design provides them with a big airgap that allow the passing of several cables per phase though them, which is the main advantage versus toroidal types, as the number of CTs required to measure the whole phase current is drastically reduced. The cables passed through the transformer window can be in several positions. As the isolines of the magnetic field generated by the primary currents are centered in the cables, if these cables are not centered in the transformer window, then the magnetic field will be non-uniform along the transformer core. Consequently, local saturations can appear if the cables are not properly disposed, causing the malfunction of the CT. In this paper, the performance of a non-toroidal-shaped protection CT is studied. This research is focused on the influence of the cable position on possible partial saturations of the CT when it is operating near to its accuracy limit. Depending on the cable position, the ratio of the primary and secondary currents can depart from the assigned ratio. The validation of this phenomenon was carried out via finite element analysis (FEA), showing that partial transformer core saturations appear in areas of the magnetic core close to the cable. By applying FEA, the admissible accuracy region for cable positioning inside the CT is also delimited. Finally, the simulation results are ratified with experimental tests performed in non-toroidal protection CTs, varying the primary cables' positions, which are subjected to currents up to 5 kA, achieving satisfactory results. From this analysis, installation recommendations are given.

2.
Sensors (Basel) ; 23(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005457

RESUMO

Brushless synchronous machines (BSMs) are replacing conventional synchronous machines with static excitation in generation facilities due to the absence of sparking and lower maintenance. However, this excitation system makes measuring electric parameters in the rotor challenging. It is highly difficult to detect ground faults, which are the most common type of electrical fault in electric machines. In this paper, a ground fault detection method for BSMs is proposed. It is based on an inductive AC/DC rotating current sensor installed in the shaft. In the case of a ground fault in the rotating parts of the BSM, a fault current will flow through the rotor's sensor, inducing voltage in its stator. By analyzing the frequency components of the induced voltage, the detection of a ground fault in the rotating elements is possible. The ground faults detection method proposed covers the whole rotor and discerns between DC and AC sides. This method does not need any additional power source, slip ring, or brush, which is an important advantage in comparison with the existing methods. To corroborate the detection method, experimental tests have been performed using a prototype of this sensor connected to laboratory synchronous machines, achieving satisfactory results.

3.
Sensors (Basel) ; 20(3)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013240

RESUMO

The analysis of the stray flux for electrical machine condition monitoring is a very modern and active research topic. Thanks to this technique, it is possible to detect several types of failures, including stator and rotor inter-turn faults, broken rotor bars and mechanical faults, among others. The main advantages are that it involves a non-invasive technique and low-cost monitoring equipment. The standard practice is to use coreless flux sensors, with which the stray flux of the machine is not perturbed and there are no problems due to saturation or nonlinear behavior of the iron. However, the induced voltage in the coreless coil sensor may be very low and even, in some cases, have a similar amplitude to the noise floor. This paper studies the use of iron core stray flux sensors for condition monitoring of electrical machines. The main advantage of iron core flux sensors is that the measured electromotive force is stronger. In the case of large machines in noisy environments, this can be crucial. Two different types of iron core stray flux sensors and a coreless flux sensor are tested. A comparison of the three sensors is presented. Extensive experimental testing with all sensors shows the superiority and greater sensitivity of sensors with core versus the coreless ones.

4.
Sensors (Basel) ; 20(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260646

RESUMO

There are several techniques for current measurement. Most of them are capable of measuring both alternating and direct current (AC/DC) components. However, they have severe drawbacks for rotating applications (large size, sensitivity to external fields, and low signal amplitude). In addition to these weaknesses, measured signals should be transmitted to a stationary part. In order to contribute solving these difficulties, this paper presents a sensor that can measure AC/DC simultaneously based on the electromagnetic coupling of two coils. To this aim, the measured waveform is analysed. In this paper, the design of such a sensor is presented. This design is validated through computer simulations and a prototype is built. The performance of this sensor prototype is analysed through experimental tests.

5.
Sensors (Basel) ; 20(15)2020 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-32722589

RESUMO

Electrical industry uses oils for cooling and insulation of several machines, such as power transformers. In addition, it uses water for cooling some synchronous generators. To avoid malfunctions in these assets, fluid quality should be preserved. To contribute to this aim, a sensor that detects changes in fluid composition is presented. The designed sensor is like a single-phase transformer whose magnetic core is the fluid whose properties will be measured. The response of this device to a frequency sweep is recorded. Through a comparison between any measurement and a reference one corresponding to a healthy state, pollutants presence, such as water in oil or salt in water, can be measured. The performance of the sensor was analyzed through simulation. In addition, a prototype was built and tested measuring water concentration in oil and salt content in water. The correlation between pollutant concentration measured with the sensor and known pollutant concentrations is good.

6.
Sensors (Basel) ; 20(11)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466611

RESUMO

Nowadays, non-toroidal shape primary pass-through current transformers are commonly used for large current machines with several cables per phase. As these transformers exhibit no radial symmetry, it is not clear if they can be tested using the indirect test described in the IEC 61869 standard. In order to answer this question, two non-toroidal shaped current transformers of different secondary winding designs have been tested and simulated. One transformer has a uniformly distributed secondary winding and the other has a partially distributed secondary winding. Both transformers have the same nameplate characteristics. Both perform correctly in the indirect test. However, only the transformer with the uniformly distributed secondary winding performs correctly in a direct test. A finite element simulation shows that the iron core of the partially distributed secondary winding transformer was saturated, while the iron core of the uniformly distributed one was not. This result explains their different performance. The main conclusion is that the indirect test is not sensitive enough to cover all cases and therefore under doubtful situations, the transformers should be tested using the direct test.

7.
Hum Brain Mapp ; 40(5): 1666-1676, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30451343

RESUMO

Hippocampal atrophy is one of the main hallmarks of Alzheimer's disease (AD). However, there is still controversy about whether this sign is a robust finding during the early stages of the disease, such as in mild cognitive impairment (MCI) and subjective cognitive decline (SCD). Considering this background, we proposed a new marker for assessing hippocampal atrophy: the local surface roughness (LSR). We tested this marker in a sample of 307 subjects (normal control (NC) = 70, SCD = 87, MCI = 137, AD = 13). In addition, 97 patients with MCI were followed-up over a 3-year period and classified as stable MCI (sMCI) (n = 61) or progressive MCI (pMCI) (n = 36). We did not find significant differences using traditional markers, such as normalized hippocampal volumes (NHV), between the NC and SCD groups or between the sMCI and pMCI groups. However, with LSR we found significant differences between the sMCI and pMCI groups and a better ability to discriminate between NC and SCD. The classification accuracy of the LSR for NC and SCD was 68.2%, while NHV had a 57.2% accuracy. In addition, the classification accuracy of the LSR for sMCI and pMCI was 74.3%, and NHV had a 68.3% accuracy. Cox proportional hazards models adjusted for age, sex, and education were used to estimate the relative hazard of progression from MCI to AD based on hippocampal markers and conversion times. The LSR marker showed better prediction of conversion to AD than NHV. These results suggest the relevance of considering the LSR as a new hippocampal marker for the AD continuum.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Progressão da Doença , Hipocampo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Algoritmos , Biomarcadores , Disfunção Cognitiva/diagnóstico por imagem , Escolaridade , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Masculino , Reprodutibilidade dos Testes , Caracteres Sexuais
8.
Curr Alzheimer Res ; 20(11): 778-790, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425106

RESUMO

BACKGROUND: Mild Cognitive Impairment (MCI) usually precedes the symptomatic phase of dementia and constitutes a window of opportunities for preventive therapies. OBJECTIVES: The objective of this study was to predict the time an MCI patient has left to reach dementia and obtain the most likely natural history in the progression of MCI towards dementia. METHODS: This study was conducted on 633 MCI patients and 145 subjects with dementia through 4726 visits over 15 years from Alzheimer Disease Neuroimaging Initiative (ADNI) cohort. A combination of data from AT(N) profiles at baseline and longitudinal predictive modeling was applied. A data-driven approach was proposed for categorical diagnosis prediction and timeline estimation of cognitive decline progression, which combined supervised and unsupervised learning techniques. RESULTS: A reduced vector of only neuropsychological measures was selected for training the models. At baseline, this approach had high performance in detecting subjects at high risk of converting from MCI to dementia in the coming years. Furthermore, a Disease Progression Model (DPM) was built and also verified using three metrics. As a result of the DPM focused on the studied population, it was inferred that amyloid pathology (A+) appears about 7 years before dementia, and tau pathology (T+) and neurodegeneration (N+) occur almost simultaneously, between 3 and 4 years before dementia. In addition, MCI-A+ subjects were shown to progress more rapidly to dementia compared to MCI-A- subjects. CONCLUSION: Based on proposed natural histories and cross-sectional and longitudinal analysis of AD markers, the results indicated that only a single cerebrospinal fluid sample is necessary during the prodromal phase of AD. Prediction from MCI into dementia and its timeline can be achieved exclusively through neuropsychological measures.


Assuntos
Disfunção Cognitiva , Demência , Progressão da Doença , Testes Neuropsicológicos , Humanos , Disfunção Cognitiva/diagnóstico , Idoso , Masculino , Feminino , Demência/diagnóstico , Estudos Longitudinais , Idoso de 80 Anos ou mais , Neuroimagem , Estudos de Coortes
9.
J Neurosci Methods ; 374: 109581, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35346695

RESUMO

BACKGROUND: A preclinical stage of Alzheimer's disease (AD) precedes the symptomatic phases of mild cognitive impairment (MCI) and dementia, which constitutes a window of opportunities for preventive therapies or delaying dementia onset. NEW METHOD: We propose to use categorical predictive models based on survival analysis with longitudinal data which are capable of determining subsets of markers to classify cognitively unimpaired (CU) subjects who progress into MCI/dementia or not. Subsequently, the proposed combination of markers was used to construct disease progression models (DPMs), which reveal long-term pathological trajectories from short-term clinical data. The proposed methodology was applied to a population recruited by the ADNI. RESULTS: A very small subset of standard MRI-based data, CSF markers and cognitive measures was used to predict CU-to-MCI/dementia progression. The longitudinal data of these selected markers were used to construct DPMs using the algorithms of growth models by alternating conditional expectation (GRACE) and the latent time joint mixed effects model (LTJMM). The results show that the natural history of the proposed cognitive decline classifies the subjects well according to the clinical groups and shows a moderate correlation between the conversion times and their estimates by the algorithms. COMPARISON WITH EXISTING METHODS: Unlike the training of the DPM algorithms without preselection of the markers, here, it is proposed to construct and evaluate the DPMs using the subsets of markers defined by the categorical predictive models. CONCLUSIONS: The estimates of the natural history of the proposed cognitive decline from GRACE were more robust than those using LTJMM. The transition from normal to cognitive decline is mostly associated with an increase in temporal atrophy, worsening of clinical scores and pTAU/Aß. Furthermore, pTAU/Aß, Everyday Cognition score and the normalized volume of the entorhinal cortex show alterations of more than 20% fifteen years before the onset of cognitive decline.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Biomarcadores , Disfunção Cognitiva/patologia , Progressão da Doença , Humanos , Imageamento por Ressonância Magnética
10.
Brain Imaging Behav ; 15(4): 1728-1738, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33169305

RESUMO

Patients with mild cognitive impairment (MCI) have a high risk for conversion to Alzheimer's disease (AD). Early diagnose of AD in MCI subjects could help to slow or halt the disease progression. Selecting a set of relevant markers from multimodal data to predict conversion from MCI to probable AD has become a challenging task. The aim of this paper is to quantify the impact of longitudinal predictive models with single- or multisource data for predicting MCI-to-AD conversion and identifying a very small subset of features that are highly predictive of conversion. We developed predictive models of MCI-to-AD progression that combine magnetic resonance imaging (MRI)-based markers (cortical thickness and volume of subcortical structures) with neuropsychological tests. These models were built with longitudinal data and validated using baseline values. By using a linear mixed effects approach, we modeled the longitudinal trajectories of the markers. A set of longitudinal features potentially discriminating between MCI subjects who convert to dementia and those who remain stable over a period of 3 years was obtained. Classifier were trained using the marginal longitudinal trajectory residues from the selected features. Our best models predicted conversion with 77% accuracy at baseline (AUC = 0.855, 84% sensitivity, 70% specificity). As more visits were available, longitudinal predictive models improved their predictions with 84% accuracy (AUC = 0.912, 83% sensitivity, 84% specificity). The proposed approach was developed, trained and evaluated using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset with a total of 2491 visits from 610 subjects.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Biomarcadores , Disfunção Cognitiva/diagnóstico por imagem , Progressão da Doença , Humanos , Imageamento por Ressonância Magnética , Neuroimagem
11.
J Neurosci Methods ; 341: 108698, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32534272

RESUMO

BACKGROUND: Longitudinal studies using structural magnetic resonance imaging (MRI) and neuropsychological measurements (NMs) allow a noninvasive means of following the subtle anatomical changes occurring during the evolution of AD. NEW METHOD: This paper compared two approaches for the construction of longitudinal predictive models: a) two-group comparison between converter and nonconverter MCI subjects and b) longitudinal survival analysis. Predictive models combined MRI-based markers with NMs and included demographic and clinical information as covariates. Both approaches employed linear mixed effects modeling to capture the longitudinal trajectories of the markers. The two-group comparison approaches used linear discriminant analysis and the survival analysis used risk ratios obtained from the extended Cox model and logistic regression. RESULTS: The proposed approaches were developed and evaluated using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset with a total of 1330 visits from 321 subjects. With both approaches, a very small number of features were selected. These markers are easily interpretable, generating robust, verifiable and reliable predictive models. Our best models predicted conversion with 78% accuracy at baseline (AUC = 0.860, 79% sensitivity, 76% specificity). As more visits were made, longitudinal predictive models improved their predictions with 85% accuracy (AUC = 0.944, 86% sensitivity, 85% specificity). COMPARISON WITH EXISTING METHOD: Unlike the recently published models, there was also an improvement in the prediction accuracy of the conversion to AD when considering the longitudinal trajectory of the patients. CONCLUSIONS: The survival-based predictive models showed a better balance between sensitivity and specificity with respect to the models based on the two-group comparison approach.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Progressão da Doença , Humanos , Imageamento por Ressonância Magnética , Neuroimagem , Análise de Sobrevida
12.
Neuroinformatics ; 17(1): 43-61, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29785624

RESUMO

Hippocampal atrophy measures from magnetic resonance imaging (MRI) are powerful tools for monitoring Alzheimer's disease (AD) progression. In this paper, we introduce a longitudinal image analysis framework based on robust registration and simultaneous hippocampal segmentation and longitudinal marker classification of brain MRI of an arbitrary number of time points. The framework comprises two innovative parts: a longitudinal segmentation and a longitudinal classification step. The results show that both steps of the longitudinal pipeline improved the reliability and the accuracy of the discrimination between clinical groups. We introduce a novel approach to the joint segmentation of the hippocampus across multiple time points; this approach is based on graph cuts of longitudinal MRI scans with constraints on hippocampal atrophy and supported by atlases. Furthermore, we use linear mixed effect (LME) modeling for differential diagnosis between clinical groups. The classifiers are trained from the average residue between the longitudinal marker of the subjects and the LME model. In our experiments, we analyzed MRI-derived longitudinal hippocampal markers from two publicly available datasets (Alzheimer's Disease Neuroimaging Initiative, ADNI and Minimal Interval Resonance Imaging in Alzheimer's Disease, MIRIAD). In test/retest reliability experiments, the proposed method yielded lower volume errors and significantly higher dice overlaps than the cross-sectional approach (volume errors: 1.55% vs 0.8%; dice overlaps: 0.945 vs 0.975). To diagnose AD, the discrimination ability of our proposal gave an area under the receiver operating characteristic (ROC) curve (AUC) [Formula: see text] 0.947 for the control vs AD, AUC [Formula: see text] 0.720 for mild cognitive impairment (MCI) vs AD, and AUC [Formula: see text] 0.805 for the control vs MCI.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Idoso , Doença de Alzheimer/patologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Progressão da Doença , Feminino , Hipocampo/patologia , Humanos , Masculino , Curva ROC , Reprodutibilidade dos Testes
13.
Neuroinformatics ; 15(2): 165-183, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28132187

RESUMO

We provide and evaluate an open-source software solution for automatically hippocampal segmentation from T1-weighted (T1w) magnetic resonance imaging (MRI). The method is applied for measuring the hippocampal volume, which allows discriminate between patients with Alzheimer's disease (AD) or mild cognitive impairment (MCI) and elderly controls (NC). The method is based on a fast patch-based label fusion method, whose selected patches and their weights are calculated from a combination of similarity measures between patches using intensity-based distances and labeling-based distances. These combined similarity measures produces better selection of the patches, and their weights are more robust. The algorithm is trained with the Harmonized Hippocampal Protocol (HarP). The proposal is compared with FreeSurfer and other label fusion methods. To evaluate the performance and the robustness of the proposed label fusion method, we employ two databases of T1w MRI of human brains. For AD vs NC, we obtain a high degree of accuracy, approximately 90 %. For MCI vs NC, we obtain accuracies around 75 %. The average time for the hippocampal segmentation from a T1w MRI is less than 17 minutes.


Assuntos
Doença de Alzheimer/patologia , Hipocampo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Idoso , Idoso de 80 Anos ou mais , Análise de Variância , Disfunção Cognitiva/patologia , Bases de Dados Factuais , Feminino , Humanos , Masculino , Entrevista Psiquiátrica Padronizada , Reconhecimento Automatizado de Padrão
14.
J Neurosci Methods ; 270: 61-75, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27328371

RESUMO

BACKGROUND: We provide and evaluate an open-source software solution for automatically measuring hippocampal volume and hippocampal surface roughness based on T1-weighted MRI, which allows for discriminating between patients with Alzheimer's disease (AD) or mild cognitive impairment (MCI) and elderly controls (NC) using only one scan. NEW METHOD: This solution is based on a fast multiple-atlas segmentation technique, which combines a patch-based labeling method with an atlas-warping using non-rigid registrations. RESULTS: The classifications are comparable to the best classifications in a large clinical dataset. For AD vs control, we obtain a high degree of accuracy, approximately 90%. For MCI vs control, we obtain accuracies ranging from 70% to 78%. The average time for the hippocampal segmentation from a T1-MRI is less than 17min. COMPARISON WITH EXISTING METHOD: In this study, we investigate a combination of our method with annotations using the Harmonized Hippocampal Protocol (HarP). We compare its capabilities with the FreeSurfer method and verify its impact on segmentation and diagnostic group separation capabilities. Our approach is developed and validated using 134 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database with annotations from HarP. Then, this method, tuned with the best parameters, is applied to 162 subjects from a private image database. CONCLUSIONS: Our approach with HarP annotations has a high level of accuracy for segmentation of the hippocampus and is robust to multi-site data. The bio-markers extracted from our proposed method have discriminative power based on a scalar feature, showing robustness in generalization and avoid overfitting. The computational time in our hippocampal segmentation algorithm has decreased considerably compared to other available analysis.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Idoso , Algoritmos , Doença de Alzheimer/classificação , Disfunção Cognitiva/classificação , Progressão da Doença , Feminino , Humanos , Masculino , Prognóstico , Software , Fatores de Tempo
15.
Artif Intell Med ; 64(2): 117-29, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25982908

RESUMO

OBJECTIVE: The objective of this study is to develop a probabilistic modeling framework for segmenting structures of interest from a collection of atlases. We present a label fusion method that is based on minimizing an energy function using graph-cut techniques. METHODS AND MATERIALS: We use a conditional random field (CRF) model that allows us to efficiently incorporate shape, appearance and context information. This model is characterized by a pseudo-Boolean function defined on unary, pairwise and higher-order potentials. Given a subset of registered atlases in the target image for a particular region of interest (ROI), we first derive an appearance-shape model from these registered atlases. The unary potentials combine an appearance model based on multiple features with a label prior using a weighted voting method. The pairwise terms are defined from a Finsler metric that minimizes the surface of separation between voxels whose labels are different. The higher-order potentials used in our framework are based on the robust P(n) model proposed by Kohli et al. The higher-order potentials enforce label consistency in cliques; hence, the proposed method can be viewed as an approach to integrate high-level information with images based on low-level features. To evaluate the performance and the robustness of the proposed label fusion method, we employ two available databases of T1-weighted (T1W) magnetic resonance (MR) images of human brains. We compare our approach with other label fusion methods in the automatic hippocampal segmentation from T1W-MR images. RESULTS: Our label fusion method yields mean Dice coefficients of 0.829 and 0.790 for the two databases used with mean times of approximately 80 and 160s, respectively. CONCLUSIONS: We introduce a new label fusion method based on a CRF model and on ROIs. The CRF model is characterized by a pseudo-Boolean function defined on unary, pairwise and higher-order potentials. The proposed Boolean function is representable by graphs. A globally optimal binary labeling is found using a st-mincut algorithm in each ROI. We show that the proposed approach is very competitive with respect to recently reported methods.


Assuntos
Atlas como Assunto , Sistemas de Apoio a Decisões Clínicas , Técnicas de Apoio para a Decisão , Hipocampo/anatomia & histologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Automação , Bases de Dados Factuais , Humanos , Modelos Estatísticos , Reconhecimento Automatizado de Padrão , Valor Preditivo dos Testes , Probabilidade , Reprodutibilidade dos Testes
16.
Comput Math Methods Med ; 2014: 182909, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25276219

RESUMO

An atlas-based segmentation approach is presented that combines low-level operations, an affine probabilistic atlas, and a multiatlas-based segmentation. The proposed combination provides highly accurate segmentation due to registrations and atlas selections based on the regions of interest (ROIs) and coarse segmentations. Our approach shares the following common elements between the probabilistic atlas and multiatlas segmentation: (a) the spatial normalisation and (b) the segmentation method, which is based on minimising a discrete energy function using graph cuts. The method is evaluated for the segmentation of the liver in computed tomography (CT) images. Low-level operations define a ROI around the liver from an abdominal CT. We generate a probabilistic atlas using an affine registration based on geometry moments from manually labelled data. Next, a coarse segmentation of the liver is obtained from the probabilistic atlas with low computational effort. Then, a multiatlas segmentation approach improves the accuracy of the segmentation. Both the atlas selections and the nonrigid registrations of the multiatlas approach use a binary mask defined by coarse segmentation. We experimentally demonstrate that this approach performs better than atlas selections and nonrigid registrations in the entire ROI. The segmentation results are comparable to those obtained by human experts and to other recently published results.


Assuntos
Neoplasias Hepáticas/diagnóstico por imagem , Fígado/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Teorema de Bayes , Humanos , Imageamento Tridimensional/métodos , Fígado/patologia , Neoplasias Hepáticas/patologia , Modelos Estatísticos , Reconhecimento Automatizado de Padrão , Probabilidade , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA