Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(2): 1000-1008, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31882446

RESUMO

Cytosolic hybrid histidine kinases (HHKs) constitute major signaling nodes that control various biological processes, but their input signals and how these are processed are largely unknown. In Caulobacter crescentus, the HHK ShkA is essential for accurate timing of the G1-S cell cycle transition and is regulated by the corresponding increase in the level of the second messenger c-di-GMP. Here, we use a combination of X-ray crystallography, NMR spectroscopy, functional analyses, and kinetic modeling to reveal the regulatory mechanism of ShkA. In the absence of c-di-GMP, ShkA predominantly adopts a compact domain arrangement that is catalytically inactive. C-di-GMP binds to the dedicated pseudoreceiver domain Rec1, thereby liberating the canonical Rec2 domain from its central position where it obstructs the large-scale motions required for catalysis. Thus, c-di-GMP cannot only stabilize domain interactions, but also engage in domain dissociation to allosterically invoke a downstream effect. Enzyme kinetics data are consistent with conformational selection of the ensemble of active domain constellations by the ligand and show that autophosphorylation is a reversible process.


Assuntos
Caulobacter crescentus/metabolismo , GMP Cíclico/análogos & derivados , Histidina Quinase/química , Histidina Quinase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/genética , Ciclo Celular/fisiologia , Cristalografia por Raios X , GMP Cíclico/química , GMP Cíclico/metabolismo , Histidina Quinase/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , Fosforilação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Sistemas do Segundo Mensageiro
2.
Mol Cell ; 53(5): 738-51, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24560924

RESUMO

To decipher the molecular basis for RET kinase activation and oncogenic deregulation, we defined the temporal sequence of RET autophosphorylation by label-free quantitative mass spectrometry. Early autophosphorylation sites map to regions flanking the kinase domain core, while sites within the activation loop only form at later time points. Comparison with oncogenic RET kinase revealed that late autophosphorylation sites become phosphorylated much earlier than wild-type RET, which is due to a combination of an enhanced enzymatic activity, increased ATP affinity, and surprisingly, by providing a better intermolecular substrate. Structural analysis of oncogenic M918T and wild-type RET kinase domains reveal a cis-inhibitory mechanism involving tethering contacts between the glycine-rich loop, activation loop, and αC-helix. Tether mutations only affected substrate presentation but perturbed the autophosphorylation trajectory similar to oncogenic mutations. This study reveals an unappreciated role for oncogenic RET kinase mutations in promoting intermolecular autophosphorylation by enhancing substrate presentation.


Assuntos
Regulação Enzimológica da Expressão Gênica , Mutação , Proteínas Proto-Oncogênicas c-ret/química , Proteínas Proto-Oncogênicas c-ret/genética , Homologia de Sequência de Aminoácidos , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Humanos , Insetos , Ligantes , Espectrometria de Massas , Dados de Sequência Molecular , Fosforilação , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Especificidade por Substrato , Fatores de Tempo , Tirosina/química
3.
Elife ; 132024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900561

RESUMO

A study of two enzymes in the brain reveals new insights into how redox reactions regulate the activity of protein kinases.


Assuntos
Oxirredução , Encéfalo/metabolismo , Encéfalo/fisiologia , Humanos , Animais , Proteínas Quinases/metabolismo
4.
J Med Chem ; 67(4): 2619-2630, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38294341

RESUMO

Targeting microtubules is the most effective wide-spectrum pharmacological strategy in antitumoral chemotherapy, and current research focuses on reducing main drawbacks: neurotoxicity and resistance. PM534 is a novel synthetic compound derived from the Structure-Activity-Relationship study on the natural molecule PM742, isolated from the sponge of the order Lithistida, family Theonellidae, genus Discodermia (du Bocage 1869). PM534 targets the entire colchicine binding domain of tubulin, covering four of the five centers of the pharmacophore model. Its nanomolar affinity and high retention time modulate a strikingly high antitumor activity that efficiently overrides two resistance mechanisms in cells (detoxification pumps and tubulin ßIII isotype overexpression). Furthermore, PM534 induces significant inhibition of tumor growth in mouse xenograft models of human non-small cell lung cancer. Our results present PM534, a highly effective new compound in the preclinical evaluation that is currently in its first human Phase I clinical trial.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Colchicina/metabolismo , Tubulina (Proteína)/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Microtúbulos , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico , Moduladores de Tubulina/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células
5.
J Adv Res ; 45: 87-100, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35595215

RESUMO

INTRODUCTION: The structural and dynamic determinants that confer highly selective RET kinase inhibition are poorly understood. OBJECTIVES: To explore the druggability landscape of the RET active site in order to uncover structural and dynamic vulnerabilities that can be therapeutically exploited. METHODS: We apply an integrated structural, computational and biochemical approach in order to explore the druggability landscape of the RET active site. RESULTS: We demonstrate that the that the druggability landscape of the RET active site is determined by the conformational setting of the ATP-binding (P-) loop and its coordination with the αC helix. Open and intermediate P-loop structures display additional druggable vulnerabilities within the active site that were not exploited by first generation RET inhibitors. We identify a cryptic pocket adjacent to the catalytic lysine formed by K758, L760, E768 and L772, that we name the post-lysine pocket, with higher druggability potential than the adenine-binding site and with important implications in the regulation of the phospho-tyrosine kinase activity. Crystal structure and simulation data show that the binding mode of highly-selective RET kinase inhibitors LOXO-292 and BLU-667 is controlled by a synchronous open P-loop and αC-in configuration that allows accessibility to the post-lysine pocket. Molecular dynamics simulations show that these inhibitors efficiently occupy the post-lysine pocket with high stability through the simulation time-scale (300 ns), with both inhibitors forming hydrophobic contacts further stabilized by pi-cation interactions with the catalytic K758. Engineered mutants targeting the post-lysine pocket impact on inhibitor binding and sensitivity, as well as RET tyrosine kinase activity. CONCLUSIONS: The identification of the post-lysine pocket as a new druggable vulnerability in the RET kinase and its exploitation by second generation RET inhibitors have important implications for future drug design and the development of personalized therapies for patients with RET-driven cancers.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-ret , Humanos , Proteínas Proto-Oncogênicas c-ret/química , Proteínas Proto-Oncogênicas c-ret/metabolismo , Lisina , Simulação de Dinâmica Molecular , Conformação Molecular
6.
Nat Commun ; 14(1): 6548, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848415

RESUMO

Autophosphorylation controls the transition between discrete functional and conformational states in protein kinases, yet the structural and molecular determinants underlying this fundamental process remain unclear. Here we show that c-terminal Tyr 530 is a de facto c-Src autophosphorylation site with slow time-resolution kinetics and a strong intermolecular component. On the contrary, activation-loop Tyr 419 undergoes faster kinetics and a cis-to-trans phosphorylation switch that controls c-terminal Tyr 530 autophosphorylation, enzyme specificity, and strikingly, c-Src non-catalytic function as a substrate. In line with this, we visualize by X-ray crystallography a snapshot of Tyr 530 intermolecular autophosphorylation. In an asymmetric arrangement of both catalytic domains, a c-terminal palindromic phospho-motif flanking Tyr 530 on the substrate molecule engages the G-loop of the active kinase adopting a position ready for entry into the catalytic cleft. Perturbation of the phospho-motif accounts for c-Src dysfunction as indicated by viral and colorectal cancer (CRC)-associated c-terminal deleted variants. We show that c-terminal residues 531 to 536 are required for c-Src Tyr 530 autophosphorylation, and such a detrimental effect is caused by the substrate molecule inhibiting allosterically the active kinase. Our work reveals a crosstalk between the activation and c-terminal segments that control the allosteric interplay between substrate- and enzyme-acting kinases during autophosphorylation.


Assuntos
Quinases da Família src , Fosforilação , Proteína Tirosina Quinase CSK/metabolismo , Domínio Catalítico , Quinases da Família src/metabolismo
7.
J Biol Chem ; 286(19): 17292-302, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21454698

RESUMO

Whether RET is able to directly phosphorylate and activate downstream targets independently of the binding of proteins that contain Src homology 2 or phosphotyrosine binding domains and whether mechanisms in trans by cytoplasmic kinases can modulate RET function and signaling remain largely unexplored. In this study, oligopeptide arrays were used to screen substrates directly phosphorylated by purified recombinant wild-type and oncogenic RET kinase domain in the presence or absence of small molecule inhibitors. The results of the peptide array were validated by enzyme kinetics, in vitro kinase, and cell-based experiments. The identification of focal adhesion kinase (FAK) as a direct substrate for RET kinase revealed (i) a RET-FAK transactivation mechanism consisting of direct phosphorylation of FAK Tyr-576/577 by RET and a reciprocal phosphorylation of RET by FAK, which crucially is able to rescue the kinase-impaired RET K758M mutant and (ii) that FAK binds RET via its FERM domain. Interestingly, this interaction is abolished upon RET phosphorylation, indicating that RET binding to the FERM domain of FAK is a priming step for RET-FAK transactivation. Finally, our data indicate that FAK inhibitors could be used as potential therapeutic agents for patients with multiple endocrine neoplasia type 2 tumors because both, treatment with the FAK kinase inhibitor NVP-TAE226 and FAK down-regulation by siRNA reduced RET phosphorylation and signaling as well as the proliferation and survival of tumor and transfected cell lines expressing oncogenic RET.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação Enzimológica da Expressão Gênica , Proteínas Proto-Oncogênicas c-ret/metabolismo , Ativação Transcricional , Antineoplásicos/farmacologia , Proliferação de Células , Proteína-Tirosina Quinases de Adesão Focal/genética , Glutationa Transferase/metabolismo , Humanos , Cinética , Oligopeptídeos/química , Fenótipo , Fosforilação , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-ret/genética , Transdução de Sinais
8.
Trends Genet ; 22(11): 627-36, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16979782

RESUMO

The receptor tyrosine kinase RET is expressed in cell lineages derived from the neural crest and has a key role in regulating cell proliferation, migration, differentiation and survival during embryogenesis. Germline and somatic mutations in RET that produce constitutively activated receptors cause the cancer syndrome multiple endocrine neoplasia type 2 and several endocrine and neural-crest-derived tumors, whereas mutations resulting in nonfunctional RET or lower expression of RET are found in individuals affected with Hirschsprung disease. This review focuses on the genetics and molecular mechanisms underlying the different inherited human neural-crest-related disorders in which RET dysfunction has a crucial role and discusses RET as a potential therapeutic target.


Assuntos
Doença de Hirschsprung/genética , Neoplasia Endócrina Múltipla Tipo 2a/genética , Polimorfismo Genético , Proteínas Proto-Oncogênicas c-ret/fisiologia , Animais , Ativação Enzimática , Haplótipos , Doença de Hirschsprung/metabolismo , Humanos , Camundongos , Neoplasia Endócrina Múltipla Tipo 2a/metabolismo , Mutação , Células NIH 3T3 , Proteínas Proto-Oncogênicas c-ret/genética , Transdução de Sinais
9.
Endocr Relat Cancer ; 25(2): T79-T90, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29175871

RESUMO

It has been twenty-five years since the discovery of oncogenic germline RET mutations as the cause of multiple endocrine neoplasia type 2 (MEN2). Intensive work over the last two and a half decades on RET genetics, signaling and cell biology has provided the current bases for the genotype-phenotype and functional correlations within this cancer syndrome. On the contrary, the structural and molecular basis for RET tyrosine kinase domain activation and oncogenic deregulation has remained largely elusive. Recent studies with a strong crystallographic and biochemical focus have started to elucidate key insights into such molecular and atomic details revealing unexpected and private mechanisms of actions and molecular determinants not previously envisioned. This review focuses on the structure and function of the RET receptor, and in particular, on what a more detailed view of the protein itself and what the current structural and molecular information tell us about the genotype and phenotype relationships in the cancer syndrome MEN2.


Assuntos
Neoplasia Endócrina Múltipla Tipo 2a/metabolismo , Proteínas Proto-Oncogênicas c-ret , Humanos , Neoplasia Endócrina Múltipla Tipo 2a/genética , Mutação , Conformação Proteica , Proteínas Proto-Oncogênicas c-ret/química , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Transdução de Sinais
10.
Endocr Relat Cancer ; 25(2): T53-T68, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29348306

RESUMO

The rearranged during transfection (RET) proto-oncogene was recognized as the multiple endocrine neoplasia type 2 (MEN2) causing gene in 1993. Since then, much effort has been put into a clear understanding of its oncogenic signaling, its biochemical function and ways to block its aberrant activation in MEN2 and related cancers. Several small molecules have been designed, developed or redirected as RET inhibitors for the treatment of MEN2 and sporadic MTC. However, current drugs are mostly active against several other kinases, as they were not originally developed for RET. This limits efficacy and poses safety issues. Therefore, there is still much to do to improve targeted MEN2 treatments. New, more potent and selective molecules, or combinatorial strategies may lead to more effective therapies in the near future. Here, we review the rationale for RET targeting in MEN2, the use of currently available drugs and novel preclinical and clinical RET inhibitor candidates.


Assuntos
Neoplasia Endócrina Múltipla Tipo 2a/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Humanos , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/uso terapêutico , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores
11.
Cancer Res ; 65(5): 1729-37, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15753368

RESUMO

The RET proto-oncogene encodes a receptor tyrosine kinase whose dysfunction plays a crucial role in the development of several neural crest disorders. Distinct activating RET mutations cause multiple endocrine neoplasia type 2A (MEN2A), type 2B (MEN2B), and familial medullary thyroid carcinoma (FMTC). Despite clear correlations between the mutations found in these cancer syndromes and their phenotypes, the molecular mechanisms connecting the mutated receptor to the different disease phenotypes are far from completely understood. Luciferase reporter assays in combination with immunoprecipitations, and Western and immunohistochemistry analyses were done in order to characterize the signaling properties of two FMTC-associated RET mutations, Y791F and S891A, respectively, both affecting the tyrosine kinase domain of the receptor. We show that these RET-FMTC mutants are monomeric receptors which are autophosphorylated and activated independently of glial cell line-derived neurotrophic factor. Moreover, we show that the dysfunctional signaling properties of these mutants, when compared with wild-type RET, involve constitutive activation of signal transducers and activators of transcription 3 (STAT3). Furthermore, we show that STAT3 activation is mediated by a signaling pathway involving Src, JAK1, and JAK2, differing from STAT3 activation promoted by RET(C634R) which was previously found to be independent of Src and JAKs. Three-dimensional modeling of the RET catalytic domain suggested that the structural changes promoted by the respective amino acids substitutions lead to a more accessible substrate and ATP-binding monomeric conformation. Finally, immunohistochemical analysis of FMTC tumor samples support the in vitro data, because nuclear localized, Y705-phosphorylated STAT3, as well as a high degree of RET expression at the plasma membrane was observed.


Assuntos
Carcinoma Medular , Mutação/genética , Fatores de Crescimento Neural/metabolismo , Proteínas Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Neoplasias da Glândula Tireoide , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Animais , Western Blotting , Carcinoma Medular/genética , Carcinoma Medular/metabolismo , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Chlorocebus aethiops , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Janus Quinase 1 , Janus Quinase 2 , Luciferases/metabolismo , Neoplasia Endócrina Múltipla Tipo 2a/genética , Neoplasia Endócrina Múltipla Tipo 2a/metabolismo , Proteínas Oncogênicas/genética , Fosforilação , Ligação Proteica , Conformação Proteica , Proteínas Tirosina Quinases/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-ret , Proteínas Proto-Oncogênicas pp60(c-src) , Receptores Proteína Tirosina Quinases/genética , Fator de Transcrição STAT3 , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Transativadores/metabolismo
12.
Sci Adv ; 2(9): e1600823, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27652341

RESUMO

Histidine kinases are key components of regulatory networks in bacteria. Although many of these enzymes are bifunctional, mediating both phosphorylation and dephosphorylation of downstream targets, the molecular details of this central regulatory switch are unclear. We showed recently that the universal second messenger cyclic di-guanosine monophosphate (c-di-GMP) drives Caulobacter crescentus cell cycle progression by forcing the cell cycle kinase CckA from its default kinase into phosphatase mode. We use a combination of structure determination, modeling, and functional analysis to demonstrate that c-di-GMP reciprocally regulates the two antagonistic CckA activities through noncovalent cross-linking of the catalytic domain with the dimerization histidine phosphotransfer (DHp) domain. We demonstrate that both c-di-GMP and ADP (adenosine diphosphate) promote phosphatase activity and propose that c-di-GMP stabilizes the ADP-bound quaternary structure, which allows the receiver domain to access the dimeric DHp stem for dephosphorylation. In silico analyses predict that c-di-GMP control is widespread among bacterial histidine kinases, arguing that it can replace or modulate canonical transmembrane signaling.


Assuntos
GMP Cíclico/química , Histidina Quinase/química , Modelos Moleculares , Monoéster Fosfórico Hidrolases/química , Difosfato de Adenosina/química , Domínio Catalítico , Caulobacter crescentus/enzimologia , Estrutura Terciária de Proteína , Transdução de Sinais
13.
Cell Rep ; 17(12): 3319-3332, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28009299

RESUMO

Receptor tyrosine kinases exhibit a variety of activation mechanisms despite highly homologous catalytic domains. Such diversity arises through coupling of extracellular ligand-binding portions with highly variable intracellular sequences flanking the tyrosine kinase domain and specific patterns of autophosphorylation sites. Here, we show that the juxtamembrane (JM) segment enhances RET catalytic domain activity through Y687. This phospho-site is also required by the JM region to rescue an otherwise catalytically deficient RET activation-loop mutant lacking tyrosines. Structure-function analyses identified interactions between the JM hinge, αC helix, and an unconventional activation-loop serine phosphorylation site that engages the HRD motif and promotes phospho-tyrosine conformational accessibility and regulatory spine assembly. We demonstrate that this phospho-S909 arises from an intrinsic RET dual-specificity kinase activity and show that an equivalent serine is required for RET signaling in Drosophila. Our findings reveal dual-specificity and allosteric components for the mechanism of RET activation and signaling with direct implications for drug discovery.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Proteínas Proto-Oncogênicas c-ret/química , Proteínas Proto-Oncogênicas c-ret/metabolismo , Receptores Proteína Tirosina Quinases/química , Relação Estrutura-Atividade , Regulação Alostérica/genética , Sequência de Aminoácidos/genética , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Ativação Enzimática/genética , Fosforilação , Proteínas Proto-Oncogênicas c-ret/genética , Receptores Proteína Tirosina Quinases/genética , Serina/metabolismo , Transdução de Sinais/genética
14.
Eur J Hum Genet ; 12(8): 604-12, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15138456

RESUMO

Hirschsprung disease (HSCR), a congenital disorder characterized by intestinal obstruction due to absence of enteric ganglia along variable lengths of the intestinal tract, occurs both in familial and sporadic cases. RET mutations have been found in approximately 50% of the families, but explains only a minority of sporadic cases. This study aims at investigating a possible role of RET in sporadic HSCR patients. Haplotypes of 13 DNA markers, within and flanking RET, have been determined for 117 sporadic HSCR patients and their parents. Strong association was observed for six markers in the 5' region of RET. The largest distortions in allele transmission were found at the same markers. One single haplotype composed of these six markers was present in 55.6% of patients versus 16.2% of controls. Odds ratios (ORs) revealed a highly increased risk of homozygotes for this haplotype to develop HSCR (OR>20). These results allowed us to conclude that RET plays a crucial role in HSCR even when no RET mutations are found. An unknown functional disease variant(s) with a dosage-dependent effect in HSCR is likely located between the promoter region and exon 2 of RET.


Assuntos
Doença de Hirschsprung/genética , Mutação/genética , Proteínas Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Adulto , Criança , Primers do DNA , Éxons/genética , Componentes do Gene , Frequência do Gene , Predisposição Genética para Doença/genética , Haplótipos/genética , Humanos , Desequilíbrio de Ligação , Repetições de Microssatélites/genética , Países Baixos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-ret
15.
Mol Cell Endocrinol ; 377(1-2): 1-6, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23811235

RESUMO

RET kinase is aberrantly activated in thyroid cancers and in rare cases of lung and colon cancer, and has been validated as a molecular target in these tumors. Vandetanib was recently approved for the treatment of medullary thyroid cancer. However, vandetanib is ineffective in vitro against RET mutants carrying bulky aminoacids at position 804, the gatekeeper residue, similarly to drug-resistant BCR-ABL mutants in chronic myeloid leukemia. Ponatinib is a multi-target kinase inhibitor that was recently approved for treatment-refractory Philadelphia-positive leukemia. We show here potent inhibition of oncogenic RET by ponatinib, including the drug-insensitive V804M/L mutants. Ponatinib inhibited the growth of RET+ and BCR-ABL+ cells with similar potency, while not affecting RET-negative cells. Both in biochemical and in cellular assays ponatinib compared favorably with known RET inhibitors, such as vandetanib, cabozantinib, sorafenib, sunitinib and motesanib, used as reference compounds. We suggest that ponatinib should be considered for the treatment of RET+ tumors, in particular those expressing vandetanib-resistant V804M/L mutations.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Imidazóis/farmacologia , Mutação/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-ret/genética , Piridazinas/farmacologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Concentração Inibidora 50 , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/metabolismo
16.
Cancer Res ; 73(12): 3783-95, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23650283

RESUMO

Most breast cancers at diagnosis are estrogen receptor-positive (ER(+)) and depend on estrogen for growth and survival. Blocking estrogen biosynthesis by aromatase inhibitors has therefore become a first-line endocrine therapy for postmenopausal women with ER(+) breast cancers. Despite providing substantial improvements in patient outcome, aromatase inhibitor resistance remains a major clinical challenge. The receptor tyrosine kinase, RET, and its coreceptor, GFRα1, are upregulated in a subset of ER(+) breast cancers, and the RET ligand, glial-derived neurotrophic factor (GDNF) is upregulated by inflammatory cytokines. Here, we report the findings of a multidisciplinary strategy to address the impact of GDNF-RET signaling in the response to aromatase inhibitor treatment. In breast cancer cells in two-dimensional and three-dimensional culture, GDNF-mediated RET signaling is enhanced in a model of aromatase inhibitor resistance. Furthermore, GDNF-RET signaling promoted the survival of aromatase inhibitor-resistant cells and elicited resistance in aromatase inhibitor-sensitive cells. Both these effects were selectively reverted by the RET kinase inhibitor, NVP-BBT594. Gene expression profiling in ER(+) cancers defined a proliferation-independent GDNF response signature that prognosed poor patient outcome and, more importantly, predicted poor response to aromatase inhibitor treatment with the development of resistance. We validated these findings by showing increased RET protein expression levels in an independent cohort of aromatase inhibitor-resistant patient specimens. Together, our results establish GDNF-RET signaling as a rational therapeutic target to combat or delay the onset of aromatase inhibitor resistance in breast cancer.


Assuntos
Inibidores da Aromatase/farmacologia , Neoplasias da Mama/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Transdução de Sinais/efeitos dos fármacos , Inibidores da Aromatase/uso terapêutico , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Estudos de Coortes , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Estradiol/análogos & derivados , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Fulvestranto , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Humanos , Estimativa de Kaplan-Meier , Letrozol , Células MCF-7 , Pessoa de Meia-Idade , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Análise de Sequência com Séries de Oligonucleotídeos , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-ret/genética , Pirimidinas/farmacologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Triazóis/farmacologia , Triazóis/uso terapêutico
17.
Trends Mol Med ; 17(3): 149-57, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21251878

RESUMO

Recent studies demonstrate that the receptor tyrosine kinase RET is overexpressed in a subset of ER-positive breast cancers and that crosstalk between RET and ER is important in responses to endocrine therapy. The development of small molecular inhibitors that target RET allows the opportunity to consider combination therapies as a strategy to improve response to treatment and to prevent and combat endocrine resistance. This review discusses: (i) the current knowledge about RET, its co-receptors and ligands in breast cancer; (ii) the breast cancer clinical trials involving agents that target RET; and (iii) the challenges that remain in terms of specificity of available inhibitors and in understanding the complex molecular mechanisms that underlie the resistance to endocrine therapy.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-ret/metabolismo , Animais , Neoplasias da Mama/genética , Feminino , Humanos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-ret/genética
19.
Cancer Res ; 67(24): 11732-41, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18089803

RESUMO

By screening a tissue microarray of invasive breast tumors, we have shown that the receptor tyrosine kinase RET (REarranged during Transfection) and its coreceptor GFR alpha 1 (GDNF receptor family alpha-1) are overexpressed in a subset of estrogen receptor-positive tumors. Germ line-activating oncogenic mutations in RET allow this receptor to signal independently of GFR alpha 1 and its ligand glial cell-derived neurotrophic factor (GDNF) to promote a spectrum of endocrine neoplasias. However, it is not known whether tumor progression can also be driven by receptor overexpression and whether expression of GDNF, as has been suggested for other neurotrophic factors, is regulated in response to the inflammatory microenvironment surrounding many epithelial cancers. Here, we show that GDNF stimulation of RET(+)/GFR alpha 1(+) MCF7 breast cancer cells in vitro enhanced cell proliferation and survival, and promoted cell scattering. Moreover, in tumor xenografts, GDNF expression was found to be up-regulated on the infiltrating endogenous fibroblasts and to a lesser extent by the tumor cells themselves. Finally, the inflammatory cytokines tumor necrosis factor-alpha and interleukin-1 beta, which are involved in tumor promotion and development, were found to act synergistically to up-regulate GDNF expression in both fibroblasts and tumor cells. These data indicate that GDNF can act as an important component of the inflammatory response in breast cancers and that its effects are mediated by both paracrine and autocrine stimulation of tumor cells via signaling through the RET and GFR alpha 1 receptors.


Assuntos
Neoplasias da Mama/genética , Citocinas/fisiologia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Mama/citologia , Mama/fisiologia , Neoplasias da Mama/patologia , Divisão Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Humanos , Inflamação , Mamoplastia , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , RNA Interferente Pequeno/genética , Transfecção , Regulação para Cima
20.
J Biol Chem ; 282(40): 29230-40, 2007 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-17664273

RESUMO

Germ line missense mutations in the RET (rearranged during transfection) oncogene are the cause of multiple endocrine neoplasia, type 2 (MEN2), but at present surgery is the only treatment available for MEN2 patients. In this study, the ability of Sorafenib (BAY 43-9006) to act as a RET inhibitor was investigated. Sorafenib inhibited the activity of purified recombinant kinase domain of wild type RET and RET(V804M) with IC(50) values of 5.9 and 7.9 nm, respectively. Interestingly, these values were 6-7-fold lower than the IC(50) for the inhibition of B-RAF(V600E). In cell-based assays, Sorafenib inhibited the kinase activity and signaling of wild type and oncogenic RET in MEN2 tumor and established cell lines at a concentration between 15 and 150 nm. In contrast, inhibition of oncogenic B-RAF- or epidermal growth factor-induced ERK1/2 phosphorylation required micromolar concentrations of Sorafenib demonstrating the high specificity of this drug in targeting RET. Moreover, prolonged exposure to Sorafenib resulted in inhibition of cell proliferation and RET protein degradation. Using lysosomal and proteasomal inhibitors, we demonstrate that Sorafenib induces RET lysosomal degradation independent of proteasomal targeting. Furthermore, we provide a structural model of the Sorafenib.RET complex in which Sorafenib binds to and induces the DFG(out) conformation of the RET kinase domain. These results strengthen the argument that Sorafenib may be effective in the treatment of MEN2 patients. In addition, because inhibition of RET is not impaired by mutation of the Val(804) gatekeeper residue, MEN2 tumors may be less susceptible to acquired Sorafenib resistance.


Assuntos
Benzenossulfonatos/farmacologia , Lisossomos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-ret/metabolismo , Piridinas/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Concentração Inibidora 50 , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neoplasia Endócrina Múltipla Tipo 2a/metabolismo , Niacinamida/análogos & derivados , Compostos de Fenilureia , Fosforilação , Proteínas Proto-Oncogênicas B-raf/metabolismo , Sorafenibe
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA