Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 173(2): 355-370.e14, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625052

RESUMO

We conducted the largest investigation of predisposition variants in cancer to date, discovering 853 pathogenic or likely pathogenic variants in 8% of 10,389 cases from 33 cancer types. Twenty-one genes showed single or cross-cancer associations, including novel associations of SDHA in melanoma and PALB2 in stomach adenocarcinoma. The 659 predisposition variants and 18 additional large deletions in tumor suppressors, including ATM, BRCA1, and NF1, showed low gene expression and frequent (43%) loss of heterozygosity or biallelic two-hit events. We also discovered 33 such variants in oncogenes, including missenses in MET, RET, and PTPN11 associated with high gene expression. We nominated 47 additional predisposition variants from prioritized VUSs supported by multiple evidences involving case-control frequency, loss of heterozygosity, expression effect, and co-localization with mutations and modified residues. Our integrative approach links rare predisposition variants to functional consequences, informing future guidelines of variant classification and germline genetic testing in cancer.


Assuntos
Células Germinativas/metabolismo , Neoplasias/patologia , Variações do Número de Cópias de DNA , Bases de Dados Genéticas , Deleção de Genes , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Células Germinativas/citologia , Mutação em Linhagem Germinativa , Humanos , Perda de Heterozigosidade/genética , Mutação de Sentido Incorreto , Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Supressoras de Tumor/genética
2.
Am J Hum Genet ; 111(9): 1810-1818, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39241757

RESUMO

A core task when establishing the strength of evidence for a gene's role in a monogenic disorder is determining the appropriate disease entity to curate. Establishing this concept determines which evidence can be applied and quantified toward the final gene-disease validity, variant pathogenicity, or actionability classification. Genes with implications in more than one phenotype can necessitate a process of lumping and splitting, disease reorganization, and updates to disease nomenclature. Reappraisal of the names that are used as labels for disease entities is therefore a necessary and perpetual process. The Clinical Genome Resource (ClinGen), in collaboration with representatives from Monarch Disease Ontology (Mondo) and Online Inheritance in Man (OMIM), formed the Disease Naming Advisory Committee (DNAC) to develop guidance for groups faced with the need to establish the "curated disease entity" for gene-phenotype validity and variant pathogenicity and to update disease names for clinical use when necessary. The objective of this group was to harmonize guidance for disease naming across these nosologic entities and among ClinGen curation groups in collaboration with other disease-related professional groups. Here, we present the initial guidance developed by the DNAC with representative examples provided by the ClinGen expert panels and working groups that warranted nomenclature updates. We also discuss the broader implications of these efforts and their benefits for harmonization of gene-disease validity curation. Overall, this work sheds light on current inconsistencies and/or discrepancies and is designed to engage the broader community on how ClinGen defines monogenic disorders using a consistent approach for disease naming.


Assuntos
Doenças Genéticas Inatas , Terminologia como Assunto , Humanos , Doenças Genéticas Inatas/genética , Bases de Dados Genéticas , Fenótipo
3.
Am J Hum Genet ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39357517

RESUMO

Pathogenic constitutional APC variants underlie familial adenomatous polyposis, the most common hereditary gastrointestinal polyposis syndrome. To improve variant classification and resolve the interpretative challenges of variants of uncertain significance (VUSs), APC-specific variant classification criteria were developed by the ClinGen-InSiGHT Hereditary Colorectal Cancer/Polyposis Variant Curation Expert Panel (VCEP) based on the criteria of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP). A streamlined algorithm using the APC-specific criteria was developed and applied to assess all APC variants in ClinVar and the International Society for Gastrointestinal Hereditary Tumours (InSiGHT) international reference APC Leiden Open Variation Database (LOVD) variant database, which included a total of 10,228 unique APC variants. Among the ClinVar and LOVD variants with an initial classification of (likely) benign or (likely) pathogenic, 94% and 96% remained in their original categories, respectively. In contrast, 41% ClinVar and 61% LOVD VUSs were reclassified into clinically meaningful classes, the vast majority as (likely) benign. The total number of VUSs was reduced by 37%. In 24 out of 37 (65%) promising APC variants that remained VUS despite evidence for pathogenicity, a data-mining-driven work-up allowed their reclassification as (likely) pathogenic. These results demonstrated that the application of APC-specific criteria substantially reduced the number of VUSs in ClinVar and LOVD. The study also demonstrated the feasibility of a systematic approach to variant classification in large datasets, which might serve as a generalizable model for other gene- or disease-specific variant interpretation initiatives. It also allowed for the prioritization of VUSs that will benefit from in-depth evidence collection. This subset of APC variants was approved by the VCEP and made publicly available through ClinVar and LOVD for widespread clinical use.

4.
Nature ; 577(7789): 179-189, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31915397

RESUMO

A primary goal of human genetics is to identify DNA sequence variants that influence biomedical traits, particularly those related to the onset and progression of human disease. Over the past 25 years, progress in realizing this objective has been transformed by advances in technology, foundational genomic resources and analytical tools, and by access to vast amounts of genotype and phenotype data. Genetic discoveries have substantially improved our understanding of the mechanisms responsible for many rare and common diseases and driven development of novel preventative and therapeutic strategies. Medical innovation will increasingly focus on delivering care tailored to individual patterns of genetic predisposition.


Assuntos
Variação Genética , Animais , Testes Genéticos , Genômica , Genótipo , Humanos , Fenótipo , Doenças Raras/genética
5.
Am J Hum Genet ; 109(3): 377-378, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35245469

RESUMO

Five colleagues discuss the importance of peer support developed through an annual dinner at the American Society of Human Genetics meetings. This simple networking event provided critical advising and counseling on their careers and life passages as women in academic medicine.

6.
Cancer ; 130(3): 467-475, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37788149

RESUMO

BACKGROUND: Overgrowth syndromes (e.g., Beckwith-Wiedemann) are associated with an increased risk of pediatric cancer, although there are few population-based estimates of risk. There are also limited studies describing associations between other overgrowth features (e.g., hepatosplenomegaly) and pediatric cancer. Therefore, cancer risk among children with these conditions was evaluated with data from a large, diverse population-based registry linkage study. METHODS: This study includes all live births in Texas during the years 1999-2017. Children with overgrowth features and syndromes were identified from the Texas Birth Defects Registry; children with cancer were identified by linkage to the Texas Cancer Registry. Cox regression models were used to estimate the hazard ratio (HR) and 95% confidence interval (CI) for the association between each overgrowth syndrome/feature and cancer, which were adjusted for infant sex and maternal age. RESULTS: In the total birth cohort (n = 6,997,422), 21,207 children were identified as having an overgrowth syndrome or feature. Children with Beckwith-Wiedemann syndrome were 42 times more likely to develop pediatric cancer (95% CI, 24.20-71.83), with hepatoblastoma being the most common, followed by Wilms tumor. The presence of any isolated overgrowth feature was associated with increased cancer risk (HR, 4.70; 95% CI, 3.83-5.77); associations were strongest for hepatosplenomegaly (HR, 23.04; 95% CI, 13.37-39.69) and macroglossia (HR, 11.18; 95% CI, 6.35-19.70). CONCLUSIONS: This population-based assessment confirmed prior findings that children with either overgrowth syndromes or features were significantly more likely to develop cancer. Overall, this study supports recommendations for cancer surveillance in children with these conditions and may also inform future research into cancer etiology.


Assuntos
Síndrome de Beckwith-Wiedemann , Neoplasias Renais , Neoplasias Hepáticas , Tumor de Wilms , Lactente , Criança , Humanos , Incidência , Síndrome de Beckwith-Wiedemann/complicações , Síndrome de Beckwith-Wiedemann/epidemiologia , Síndrome de Beckwith-Wiedemann/genética , Tumor de Wilms/epidemiologia , Neoplasias Renais/complicações , Neoplasias Hepáticas/complicações
7.
Genet Med ; 26(2): 101033, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38007624

RESUMO

This white paper was prepared by the Global Alliance for Genomics and Health Regulatory and Ethics Work Stream's Pediatric Task Team to review and provide perspective with respect to ethical, legal, and social issues regarding the return of secondary pharmacogenomic variants in children who have a serious disease or developmental disorder and are undergoing exome or genome sequencing to identify a genetic cause of their condition. We discuss actively searching for and reporting pharmacogenetic/genomic variants in pediatric patients, different methods of returning secondary pharmacogenomic findings to the patient/parents and/or treating clinicians, maintaining these data in the patient's health record over time, decision supports to assist using pharmacogenetic results in future treatment decisions, and sharing information in public databases to improve the clinical interpretation of pharmacogenetic variants identified in other children. We conclude by presenting a series of points to consider for clinicians and policymakers regarding whether, and under what circumstances, routine screening and return of pharmacogenomic variants unrelated to the indications for testing is appropriate in children who are undergoing genome-wide sequencing to assist in the diagnosis of a suspected genetic disease.


Assuntos
Farmacogenética , Variantes Farmacogenômicos , Humanos , Criança , Genômica , Mapeamento Cromossômico , Exoma
8.
Genet Med ; 26(8): 101168, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38767058

RESUMO

PURPOSE: Professional guidelines recommend engaging adolescents and young adults (AYAs) in medical decision making (DM), including whether to undergo genomic sequencing (GS). We explored DM around GS and attitudes after return of GS results among a diverse group of AYAs with cancer and their parents. METHODS: We surveyed AYAs with cancer (n = 75) and their parents (n = 52) 6 months after receiving GS results through the Texas KidsCanSeq study. We analyzed AYAs' DM role in GS research enrollment and their satisfaction with that role. We compared AYAs' and parents' self-reported understanding of, attitudes toward, and perceived utility of the AYA's GS results. RESULTS: Most AYAs reported equally sharing DM with their parents (55%) or leading DM (36%) about GS research. Compared with their cancer care DM role, 56% of AYAs reported the same level of involvement in GS research DM, whereas 32% were more involved, and 13% were less involved (P = .011). AYAs were satisfied (99%) with their DM role regarding GS study participation. AYAs and parents had similar self-reported understanding of, attitudes toward, and perceived utility of the GS results. CONCLUSION: Our results support engaging AYAs in DM about GS research and provide insights into AYAs' DM preferences and positive attitudes toward GS.


Assuntos
Tomada de Decisões , Neoplasias , Pais , Humanos , Adolescente , Masculino , Feminino , Pais/psicologia , Adulto Jovem , Neoplasias/genética , Neoplasias/psicologia , Neoplasias/terapia , Adulto , Inquéritos e Questionários , Genômica/métodos , Testes Genéticos , Conhecimentos, Atitudes e Prática em Saúde
9.
Genet Med ; 26(2): 100992, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37800450

RESUMO

PURPOSE: The Hereditary Colorectal Cancer/Polyposis Variant Curation Expert Panel (VCEP) was established by the International Society for Gastrointestinal Hereditary Tumours and the Clinical Genome Resource, who set out to develop recommendations for the interpretation of germline APC variants underlying Familial Adenomatous Polyposis, the most frequent hereditary polyposis syndrome. METHODS: Through a rigorous process of database analysis, literature review, and expert elicitation, the APC VCEP derived gene-specific modifications to the ACMG/AMP (American College of Medical Genetics and Genomics and Association for Molecular Pathology) variant classification guidelines and validated such criteria through the pilot classification of 58 variants. RESULTS: The APC-specific criteria represented gene- and disease-informed specifications, including a quantitative approach to allele frequency thresholds, a stepwise decision tool for truncating variants, and semiquantitative evaluations of experimental and clinical data. Using the APC-specific criteria, 47% (27/58) of pilot variants were reclassified including 14 previous variants of uncertain significance (VUS). CONCLUSION: The APC-specific ACMG/AMP criteria preserved the classification of well-characterized variants on ClinVar while substantially reducing the number of VUS by 56% (14/25). Moving forward, the APC VCEP will continue to interpret prioritized lists of VUS, the results of which will represent the most authoritative variant classification for widespread clinical use.


Assuntos
Polipose Adenomatosa do Colo , Testes Genéticos , Humanos , Testes Genéticos/métodos , Variação Genética , Polipose Adenomatosa do Colo/diagnóstico , Polipose Adenomatosa do Colo/genética , Mutação em Linhagem Germinativa/genética , Células Germinativas
10.
J Med Genet ; 60(10): 987-992, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36813544

RESUMO

Heterozygous germline pathogenic variants (GPVs) in SMARCA4, the gene encoding the ATP-dependent chromatin remodelling protein SMARCA4 (previously known as BRG1), predispose to several rare tumour types, including small cell carcinoma of the ovary, hypercalcaemic type, atypical teratoid and malignant rhabdoid tumour, and uterine sarcoma. The increase in germline testing of SMARCA4 in recent years has revealed putative GPVs affecting SMARCA4 in patients with other cancer types. Here we describe 11 patients with neuroblastoma (NBL), including 4 previously unreported cases, all of whom were found to harbour heterozygous germline variants in SMARCA4 Median age at diagnosis was 5 years (range 2 months-26 years); nine were male; and eight of nine cases had tumour location information in the adrenal gland. Eight of the germline variants were expected to result in loss of function of SMARCA4 (large deletion, truncating and canonical splice variants), while the remaining four were missense variants. Loss of heterozygosity of the wild-type SMARCA4 allele was found in all eight cases where somatic testing was performed, supporting the notion that SMARCA4 functions as a classic tumour suppressor. Altogether, these findings strongly suggest that NBL should be included in the spectrum of SMARCA4-associated tumours.


Assuntos
Carcinoma de Células Pequenas , Neuroblastoma , Feminino , Humanos , Lactente , Masculino , Biomarcadores Tumorais/genética , Carcinoma de Células Pequenas/diagnóstico , Carcinoma de Células Pequenas/genética , Carcinoma de Células Pequenas/patologia , DNA Helicases/genética , Mutação em Linhagem Germinativa/genética , Neuroblastoma/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto
11.
J Med Genet ; 60(6): 568-575, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36600593

RESUMO

BACKGROUND: Germline pathogenic variants in CDH1 are associated with increased risk of diffuse gastric cancer and lobular breast cancer. Risk reduction strategies include consideration of prophylactic surgery, thereby making accurate interpretation of germline CDH1 variants critical for physicians deciding on these procedures. The Clinical Genome Resource (ClinGen) CDH1 Variant Curation Expert Panel (VCEP) developed specifications for CDH1 variant curation with a goal to resolve variants of uncertain significance (VUS) and with ClinVar conflicting interpretations and continues to update these specifications. METHODS: CDH1 variant classification specifications were modified based on updated genetic testing clinical criteria, new recommendations from ClinGen and expert knowledge from ongoing CDH1 variant curations. The CDH1 VCEP reviewed 273 variants using updated CDH1 specifications and incorporated published and unpublished data provided by diagnostic laboratories. RESULTS: Updated CDH1-specific interpretation guidelines include 11 major modifications since the initial specifications from 2018. Using the refined guidelines, 97% (36 of 37) of variants with ClinVar conflicting interpretations were resolved to benign, likely benign, likely pathogenic or pathogenic, and 35% (15 of 43) of VUS were resolved to benign or likely benign. Overall, 88% (239 of 273) of curated variants had non-VUS classifications. To date, variants classified as pathogenic are either nonsense, frameshift, splicing, or affecting the translation initiation codon, and the only missense variants classified as pathogenic or likely pathogenic have been shown to affect splicing. CONCLUSIONS: The development and evolution of CDH1-specific criteria by the expert panel resulted in decreased uncertain and conflicting interpretations of variants in this clinically actionable gene, which can ultimately lead to more effective clinical management recommendations.


Assuntos
Variação Genética , Neoplasias Gástricas , Humanos , Testes Genéticos , Mutação em Linhagem Germinativa/genética , Neoplasias Gástricas/genética , Células Germinativas , Antígenos CD/genética , Caderinas/genética
12.
J Genet Couns ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225886

RESUMO

Access to genomic sequencing (GS) and resulting recommendations have not been well described in pediatric oncology. GS results may provide a cancer predisposition syndrome (CPS) diagnosis that warrants screening and specialist visits beyond cancer treatment, including testing or surveillance for family members. The Texas KidsCanSeq (KCS) Study evaluated implementation of GS in a diverse pediatric oncology population. We conducted semi-structured interviews (n = 20) to explore experiences of KCS patients' families around learning about a CPS diagnosis and following up on recommended care. We used qualitative content analysis to develop themes and subthemes across families' descriptions of their experiences accessing care and to understand which factors presented barriers and/or facilitators. We found participants had difficulty differentiating which follow-up care recommendations were made for their child's current cancer treatment versus the CPS. In families' access to follow-up care for CPS, organizational factors were crucial: travel time and distance were common hardships, while coordination of care to streamline multiple appointments with different providers helped facilitate CPS care. Financial factors also impacted families' access to CPS-related follow-up care: having financial assistance and insurance were facilitators for families, while costs and lack of insurance posed as barriers for patients who lost coverage during transitions from pediatric to adult care, and for adult family members who had no coverage. Factors related to beliefs and perceptions, specifically perceiving the risk as less salient to them and feeling overwhelmed with the patient's cancer care, presented barriers to follow-up care primarily for family members. Regarding social factors, competing life priorities made it difficult for families to access follow-up care, though having community support alleviated these barriers. We suggest interventions to improve coordination of cancer treatment and CPS-related care and adherence to surveillance protocols for families as children age, such as care navigators and integrating longitudinal genetic counseling into hereditary cancer centers.

13.
Cancer ; 129(20): 3300-3308, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37366624

RESUMO

BACKGROUND: Studies have reported increased rates of birth defects among children with germ cell tumors (GCTs). However, few studies have evaluated associations by sex, type of defect, or tumor characteristics. METHODS: Birth defect-GCT associations were evaluated among pediatric patients (N = 552) with GCTs enrolled in the Germ Cell Tumor Epidemiology Study and population-based controls (N = 6380) without cancer from the Genetic Overlap Between Anomalies and Cancer in Kids Study. The odds ratio (OR) and 95% confidence interval (CI) of GCTs according to birth defects status were estimated by using unconditional logistic regression. All defects were considered collectively and by genetic and chromosomal syndromes and nonsyndromic defects. Stratification was by sex, tumor histology (yolk sac tumor, teratoma, germinoma, and mixed/other), and location (gonadal, extragonadal, and intracranial). RESULTS: Birth defects and syndromic defects were more common among GCT cases than controls (6.9% vs. 4.0% and 2.7% vs. 0.2%, respectively; both p < .001). In multivariable models, GCT risk was increased among children with birth defects (OR, 1.7; 95% CI, 1.3-2.4) and syndromic defects (OR, 10.4; 95% CI, 4.9-22.1). When stratified by tumor characteristics, birth defects were associated with yolk sac tumors (OR, 2.7; 95% CI, 1.3-5.0) and mixed/other histologies (OR, 2.1; 95% CI, 1.2-3.5) and both gonadal tumors (OR, 1.7; 95% CI, 1.0-2.7) and extragonadal tumors (OR, 3.8; 95% CI, 2.1-6.5). Nonsyndromic defects specifically were not associated with GCTs. In sex-stratified analyses, associations were observed among males but not females. CONCLUSIONS: These data suggest that males with syndromic birth defects are at an increased risk of pediatric GCTs, whereas males with nonsyndromic defects and females are not at an increased risk. PLAIN LANGUAGE SUMMARY: We investigated whether birth defects (such as congenital heart disease or Down syndrome) are linked to childhood germ cell tumors (GCTs), cancers that mainly develop in the ovaries or testes. We studied different types of birth defects (defects that were caused by chromosome changes such as Down syndrome or Klinefelter syndrome and defects that were not) and different types of GCTs. Only chromosome changes such as Down syndrome or Klinefelter syndrome were linked to GCTs. Our study suggests that most children with birth defects are not at an increased risk of GCTs because most birth defects are not caused by chromosome changes.


Assuntos
Síndrome de Down , Síndrome de Klinefelter , Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Masculino , Criança , Humanos , Adolescente , Neoplasias Embrionárias de Células Germinativas/epidemiologia , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Testiculares/epidemiologia , Neoplasias Testiculares/genética
14.
Am J Hum Genet ; 107(1): 72-82, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32504544

RESUMO

Genetics researchers and clinical professionals rely on diversity measures such as race, ethnicity, and ancestry (REA) to stratify study participants and patients for a variety of applications in research and precision medicine. However, there are no comprehensive, widely accepted standards or guidelines for collecting and using such data in clinical genetics practice. Two NIH-funded research consortia, the Clinical Genome Resource (ClinGen) and Clinical Sequencing Evidence-generating Research (CSER), have partnered to address this issue and report how REA are currently collected, conceptualized, and used. Surveying clinical genetics professionals and researchers (n = 448), we found heterogeneity in the way REA are perceived, defined, and measured, with variation in the perceived importance of REA in both clinical and research settings. The majority of respondents (>55%) felt that REA are at least somewhat important for clinical variant interpretation, ordering genetic tests, and communicating results to patients. However, there was no consensus on the relevance of REA, including how each of these measures should be used in different scenarios and what information they can convey in the context of human genetics. A lack of common definitions and applications of REA across the precision medicine pipeline may contribute to inconsistencies in data collection, missing or inaccurate classifications, and misleading or inconclusive results. Thus, our findings support the need for standardization and harmonization of REA data collection and use in clinical genetics and precision health research.


Assuntos
Coleta de Dados/normas , Testes Genéticos/normas , Adulto , Criança , Etnicidade , Feminino , Variação Genética/genética , Genômica/normas , Humanos , Masculino , Medicina de Precisão/normas , Proibitinas , Inquéritos e Questionários
15.
Pediatr Blood Cancer ; : e30413, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37194615

RESUMO

Rhabdomyosarcoma (RMS) is a well-described cancer in Li-Fraumeni syndrome, resulting from germline TP53 pathogenic variants (PVs). RMS exhibiting anaplasia (anRMS) are associated with a high rate of germline TP53 PVs. This study provides updated estimates of the prevalence of TP53 germline PVs in RMS (3%) and anRMS (11%) from a large cohort (n = 239) enrolled in five Children's Oncology Group (COG) clinical trials. Although the prevalence of germline TP53 PVs in patients with anRMS in this series is much lower than previously reported, this prevalence remains elevated. Germline evaluation for TP53 PVs should be strongly considered in patients with anRMS.

16.
Pediatr Hematol Oncol ; 40(8): 719-738, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37366551

RESUMO

The potential of circulating tumor DNA (ctDNA) analysis to serve as a real-time "liquid biopsy" for children with central nervous system (CNS) and non-CNS solid tumors remains to be fully elucidated. We conducted a study to investigate the feasibility and potential clinical utility of ctDNA sequencing in pediatric patients enrolled on an institutional clinical genomics trial. A total of 240 patients had tumor DNA profiling performed during the study period. Plasma samples were collected at study enrollment from 217 patients and then longitudinally from a subset of patients. Successful cell-free DNA extraction and quantification occurred in 216 of 217 (99.5%) of these initial samples. Twenty-four patients were identified whose tumors harbored 30 unique variants that were potentially detectable on a commercially-available ctDNA panel. Twenty of these 30 mutations (67%) were successfully detected by next-generation sequencing in the ctDNA from at least one plasma sample. The rate of ctDNA mutation detection was higher in patients with non-CNS solid tumors (7/9, 78%) compared to those with CNS tumors (9/15, 60%). A higher ctDNA mutation detection rate was also observed in patients with metastatic disease (9/10, 90%) compared to non-metastatic disease (7/14, 50%), although tumor-specific variants were detected in a few patients in the absence of radiographic evidence of disease. This study illustrates the feasibility of incorporating longitudinal ctDNA analysis into the management of relapsed or refractory patients with childhood CNS or non-CNS solid tumors.


Assuntos
Neoplasias Encefálicas , DNA Tumoral Circulante , Humanos , Criança , DNA Tumoral Circulante/genética , Estudos de Viabilidade , Biomarcadores Tumorais , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias Encefálicas/genética , Mutação
17.
Annu Rev Genomics Hum Genet ; 20: 241-263, 2019 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-31082280

RESUMO

Developments over the past five years have significantly advanced our ability to use genome-scale analyses-including high-density genotyping, transcriptome sequencing, exome sequencing, and genome sequencing-to identify the genetic basis of childhood cancer. This article reviews several key results from an expanding number of genomic studies of pediatric cancer: (a) Histopathologic subtypes of cancers can be associated with a high incidence of germline predisposition, (b) neurodevelopmental disorders or highly penetrant cancer predisposition syndromes can result from specific patterns of variation in genes encoding the SMARC family of chromatin remodelers, (c) genome-wide association studies with relatively small pediatric cancer cohorts have successfully identified single-nucleotide polymorphisms with large effect sizes and provided insight into population differences in cancer risk, and (d) multiple exome or genome analyses of unselected childhood cancer cohorts have yielded a 7-10% incidence of pathogenic variants in cancer predisposition genes. This work supports the increasing use of genomic sequencing in the care of pediatric cancer patients and at-risk family members.


Assuntos
Proteínas Cromossômicas não Histona/genética , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Proteínas de Neoplasias/genética , Neoplasias/genética , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética , Adulto , Criança , Proteínas Cromossômicas não Histona/metabolismo , Exoma , Estudo de Associação Genômica Ampla , Genômica/métodos , Humanos , Mutação , Proteínas de Neoplasias/metabolismo , Neoplasias/classificação , Neoplasias/metabolismo , Neoplasias/patologia , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/patologia , Fatores de Transcrição/metabolismo , Sequenciamento do Exoma
18.
Am J Hum Genet ; 105(3): 625-630, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31303264

RESUMO

Rothmund-Thomson syndrome (RTS) is an autosomal-recessive disorder characterized by poikiloderma, sparse hair, short stature, and skeletal anomalies. Type 2 RTS, which is defined by the presence of bi-allelic mutations in RECQL4, is characterized by increased cancer susceptibility and skeletal anomalies, whereas the genetic basis of RTS type 1, which is associated with juvenile cataracts, is unknown. We studied ten individuals, from seven families, who had RTS type 1 and identified a deep intronic splicing mutation of the ANAPC1 gene, a component of the anaphase-promoting complex/cyclosome (APC/C), in all affected individuals, either in the homozygous state or in trans with another mutation. Fibroblast studies showed that the intronic mutation causes the activation of a 95 bp pseudoexon, leading to mRNAs with premature termination codons and nonsense-mediated decay, decreased ANAPC1 protein levels, and prolongation of interphase. Interestingly, mice that were heterozygous for a knockout mutation have an increased incidence of cataracts. Our results demonstrate that deficiency in the APC/C is a cause of RTS type 1 and suggest a possible link between the APC/C and RECQL4 helicase because both proteins are involved in DNA repair and replication.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/genética , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/genética , Mutação , Síndrome de Rothmund-Thomson/genética , Humanos
19.
Genet Med ; 24(5): 986-998, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35101336

RESUMO

PURPOSE: Several professional societies have published guidelines for the clinical interpretation of somatic variants, which specifically address diagnostic, prognostic, and therapeutic implications. Although these guidelines for the clinical interpretation of variants include data types that may be used to determine the oncogenicity of a variant (eg, population frequency, functional, and in silico data or somatic frequency), they do not provide a direct, systematic, and comprehensive set of standards and rules to classify the oncogenicity of a somatic variant. This insufficient guidance leads to inconsistent classification of rare somatic variants in cancer, generates variability in their clinical interpretation, and, importantly, affects patient care. Therefore, it is essential to address this unmet need. METHODS: Clinical Genome Resource (ClinGen) Somatic Cancer Clinical Domain Working Group and ClinGen Germline/Somatic Variant Subcommittee, the Cancer Genomics Consortium, and the Variant Interpretation for Cancer Consortium used a consensus approach to develop a standard operating procedure (SOP) for the classification of oncogenicity of somatic variants. RESULTS: This comprehensive SOP has been developed to improve consistency in somatic variant classification and has been validated on 94 somatic variants in 10 common cancer-related genes. CONCLUSION: The comprehensive SOP is now available for classification of oncogenicity of somatic variants.


Assuntos
Genoma Humano , Neoplasias , Testes Genéticos/métodos , Variação Genética/genética , Genoma Humano/genética , Genômica/métodos , Humanos , Neoplasias/genética , Virulência
20.
Pediatr Blood Cancer ; 69(11): e29859, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35713195

RESUMO

BACKGROUND: The association of childhood cancer with Lynch syndrome is not established compared with the significant pediatric cancer risk in recessive constitutional mismatch repair deficiency syndrome (CMMRD). PROCEDURE: We describe the clinical features, germline analysis, and tumor genomic profiling of patients with Lynch syndrome among patients enrolled in pediatric cancer genomic studies. RESULTS: There were six of 773 (0.8%) pediatric patients with solid tumors identified with Lynch syndrome, defined as a germline heterozygous pathogenic variant in one of the mismatch repair (MMR) genes (three with MSH6, two with MLH1, and one with MSH2). Tumor analysis demonstrated evidence for somatic second hits and/or increased tumor mutation burden in three of four patients with available tumor with potential implications for therapy and identification of at-risk family members. Only one patient met current guidelines for pediatric cancer genetics evaluation at the time of tumor diagnosis. CONCLUSION: Approximately 1% of children with cancer have Lynch syndrome, which is missed with current referral guidelines, suggesting the importance of adding MMR genes to tumor and hereditary pediatric cancer panels. Tumor analysis may provide the first suggestion of an underlying cancer predisposition syndrome and is useful in distinguishing between Lynch syndrome and CMMRD.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Encefálicas , Criança , Neoplasias Colorretais , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA/genética , Proteínas de Ligação a DNA/genética , Mutação em Linhagem Germinativa , Humanos , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Síndromes Neoplásicas Hereditárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA