Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Biophys J ; 119(12): 2378-2390, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189686

RESUMO

We have developed a novel, to our knowledge, in vitro instrument that can deliver intermediate-frequency (100-400 kHz), moderate-intensity (up to and exceeding 6.5 V/cm pk-pk) electric fields (EFs) to cell and tissue cultures generated using induced electromagnetic fields (EMFs) in an air-core solenoid coil. A major application of these EFs is as an emerging cancer treatment modality. In vitro studies by Novocure reported that intermediate-frequency (100-300 kHz), low-amplitude (1-3 V/cm) EFs, which they called "tumor-treating fields (TTFields)," had an antimitotic effect on glioblastoma multiforme (GBM) cells. The effect was found to increase with increasing EF amplitude. Despite continued theoretical, preclinical, and clinical study, the mechanism of action remains incompletely understood. All previous in vitro studies of "TTFields" have used attached, capacitively coupled electrodes to deliver alternating EFs to cell and tissue cultures. This contacting delivery method suffers from a poorly characterized EF profile and conductive heating that limits the duration and amplitude of the applied EFs. In contrast, our device delivers EFs with a well-characterized radial profile in a noncontacting manner, eliminating conductive heating and enabling thermally regulated EF delivery. To test and demonstrate our system, we generated continuous, 200-kHz EMF with an EF amplitude profile spanning 0-6.5 V/cm pk-pk and applied them to exemplar human thyroid cell cultures for 72 h. We observed moderate reduction in cell density (<10%) at low EF amplitudes (<4 V/cm) and a greater reduction in cell density of up to 25% at higher amplitudes (4-6.5 V/cm). Our device can be readily extended to other EF frequency and amplitude regimes. Future studies with this device should contribute to the ongoing debate about the efficacy and mechanism(s) of action of "TTFields" by better isolating the effects of EFs and providing access to previously inaccessible EF regimes.


Assuntos
Terapia por Estimulação Elétrica , Glioblastoma , Condutividade Elétrica , Campos Eletromagnéticos , Glioblastoma/terapia , Humanos
2.
Am J Cancer Res ; 14(2): 562-584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455403

RESUMO

Previous studies reported that alternating electric fields (EFs) in the intermediate frequency (100-300 kHz) and low intensity (1-3 V/cm) regime - termed "Tumor Treating Fields" (TTFields) - have a specific, anti-proliferative effect on glioblastoma multiforme (GBM) cells. However, the mechanism(s) of action remain(s) incompletely understood, hindering the clinical adoption of treatments based on TTFields. To advance the study of such treatment in vitro, we developed an inductive device to deliver EFs to cell cultures which improves thermal and osmolar regulation compared to prior devices. Using this inductive device, we applied continuous, 200 kHz electromagnetic fields (EMFs) with a radial EF amplitude profile spanning 0-6.5 V/cm to cultures of primary rat astrocytes and several human GBM cell lines - U87, U118, GSC827, and GSC923 - for a duration of 72 hours. Cell density was assessed via segmented pixel densities from GFP expression (U87, U118) or from staining (astrocytes, GSC827, GSC923). Further RNA-Seq analyses were performed on GSC827 and GSC923 cells. Treated cultures of all cell lines exhibited little to no change in proliferation at lower EF amplitudes (0-3 V/cm). At higher amplitudes (> 4 V/cm), different effects were observed. Apparent cell densities increased (U87), decreased (GSC827, GSC923), or showed little change (U118, astrocytes). RNA-Seq analyses on treated and untreated GSC827 and GSC923 cells revealed differentially expressed gene sets of interest, such as those related to cell cycle control. Up- and down-regulation, however, was not consistent across cell lines nor EF amplitudes. Our results indicate no consistent, anti-proliferative effect of 200 kHz EMFs across GBM cell lines and thus contradict previous in vitro findings. Rather, effects varied across different cell lines and EF amplitude regimes, highlighting the need to assess the effect(s) of TTFields and similar treatments on a per cell line basis.

3.
Nat Genet ; 33(1): 19-20, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12447372

RESUMO

To evaluate the timing of mutations in BRAF (v-raf murine sarcoma viral oncogene homolog B1) during melanocytic neoplasia, we carried out mutation analysis on microdissected melanoma and nevi samples. We observed mutations resulting in the V599E amino-acid substitution in 41 of 60 (68%) melanoma metastases, 4 of 5 (80%) primary melanomas and, unexpectedly, in 63 of 77 (82%) nevi. These data suggest that mutational activation of the RAS/RAF/MAPK pathway in nevi is a critical step in the initiation of melanocytic neoplasia but alone is insufficient for melanoma tumorigenesis.


Assuntos
Melanoma/genética , Mutação de Sentido Incorreto/genética , Nevo/genética , Proteínas Oncogênicas v-raf/genética , Transformação Celular Neoplásica/genética , Análise Mutacional de DNA , Frequência do Gene , Predisposição Genética para Doença , Humanos , Melanoma/patologia , Nevo/patologia , Proteínas Oncogênicas v-raf/química , Reação em Cadeia da Polimerase , Transdução de Sinais
4.
bioRxiv ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36789415

RESUMO

Previous studies reported that alternating electric fields (EFs) in the intermediate frequency (100 - 300 kHz) and low intensity (1 - 3 V/cm) regime - termed "Tumor Treating Fields" (TTFields) - have a specific, anti-proliferative effect on glioblastoma multiforme (GBM) cells. However, the mechanism(s) of action remain(s) incompletely understood, hindering the clinical adoption of treatments based on TTFields. To advance the study of such treatment in vitro , we developed an inductive device to deliver EFs to cell cultures which improves thermal and osmolar regulation compared to prior devices. Using this inductive device, we applied continuous, 200 kHz electromagnetic fields (EMFs) with a radial EF amplitude profile spanning 0 - 6.5 V/cm to cultures of primary rat astrocytes and several human GBM cell lines - U87, U118, GSC827, and GSC923 - for a duration of 72 hours. Cell density was assessed via segmented pixel densities from GFP expression (U87, U118) or from staining (astrocytes, GSC827, GSC923). Further RNA-Seq analyses were performed on GSC827 and GSC923 cells. Treated cultures of all cell lines exhibited little to no change in proliferation at lower EF amplitudes (0 - 3 V/cm). At higher amplitudes (> 4 V/cm), different effects were observed. Apparent cell densities increased (U87), decreased (GSC827, GSC923), or showed little change (U118, astrocytes). RNA-Seq analyses on treated and untreated GSC827 and GSC923 cells revealed differentially expressed gene sets of interest, such as those related to cell cycle control. Up- and down-regulation, however, was not consistent across cell lines nor EF amplitudes. Our results indicate no consistent, anti-proliferative effect of 200 kHz EMFs across GBM cell lines and thus contradict previous in vitro findings. Rather, effects varied across different cell lines and EF amplitude regimes, highlighting the need to assess the effect(s) of TTFields and similar treatments on a per cell line basis.

5.
Circ Res ; 106(6): 1129-33, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20167928

RESUMO

RATIONALE: In vivo microscopy seeks to observe dynamic subcellular processes in a physiologically relevant context. A primary limitation of optical microscopy in vivo is tissue motion, which prevents physiological time course observations or image averaging. OBJECTIVE: To develop and demonstrate motion compensation methods that can automatically track image planes within biological tissues, including the tissue displacements associated with large changes in blood flow, and to evaluate the effect of global hypoxia on the regional kinetics and steady state levels of mitochondrial NAD(P)H. METHODS AND RESULTS: A dynamic optical microscope, with real-time prospective tracking and retrospective image processing, was used collect high-resolution images through cellular responses to various perturbations. The subcellular metabolic response to hypoxia was examined in vivo. Mitochondria closest to the capillaries were significantly more oxidized at rest (67+/-3%) than the intrafibrillar mitochondria (83+/-3%; P<0.0001) in the same cell. CONCLUSIONS: These data are consistent with the hypothesis that a significant oxygen gradient from capillary to muscle core exists at rest, thereby reducing the oxidative load on the muscle cell.


Assuntos
Hipóxia/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , NADP/metabolismo , Oxigênio/metabolismo , Processamento de Sinais Assistido por Computador , Animais , Artefatos , Capilares/metabolismo , Hipóxia/fisiopatologia , Cinética , Extremidade Inferior , Camundongos , Movimento (Física) , Músculo Esquelético/irrigação sanguínea , Oxirredução , Estresse Oxidativo , Oxigênio/sangue , Análise de Componente Principal , Fluxo Sanguíneo Regional , Reprodutibilidade dos Testes
6.
Cereb Cortex ; 21(1): 48-55, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20378581

RESUMO

Self-agency (SA) is the individual's perception that an action is the consequence of his/her own intention. The neural networks underlying SA are not well understood. We carried out a novel, ecologically valid, virtual-reality experiment using blood oxygen level-dependent functional magnetic resonance imaging (fMRI) where SA could be modulated in real-time while subjects performed voluntary finger movements. Behavioral testing was also performed to assess the explicit judgment of SA. Twenty healthy volunteers completed the experiment. Results of the behavioral testing demonstrated paradigm validity along with the identification of a bias that led subjects to over- or underestimate the amount of control they had. The fMRI experiment identified 2 discrete networks. These leading and lagging networks likely represent a spatial and temporal flow of information, with the leading network serving the role of mismatch detection and the lagging network receiving this information and mediating its elevation to conscious awareness, giving rise to SA.


Assuntos
Córtex Cerebral/fisiologia , Cognição/fisiologia , Função Executiva/fisiologia , Rede Nervosa/fisiologia , Autonomia Pessoal , Volição/fisiologia , Adolescente , Adulto , Córtex Cerebral/anatomia & histologia , Feminino , Humanos , Masculino , Adulto Jovem
7.
eNeuro ; 7(3)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32284342

RESUMO

Video tracking is an essential tool in rodent research. Here, we demonstrate a machine vision rodent tracking camera based on a low-cost, open-source, machine vision camera, the OpenMV Cam M7. We call our device the rodent arena tracker (RAT), and it is a pocket-sized machine vision-based position tracker. The RAT does not require a tethered computer to operate and costs about $120 per device to build. These features make the RAT scalable to large installations and accessible to research institutions and educational settings where budgets may be limited. The RAT processes incoming video in real-time at 15 Hz and saves x and y positional information to an onboard microSD card. The RAT also provides a programmable multi-function input/output pin that can be used for controlling other equipment, transmitting tracking information in real time, or receiving data from other devices. Finally, the RAT includes a real-time clock (RTC) for accurate time stamping of data files. Real-time image processing averts the need to save video, greatly reducing storage, data handling, and communication requirements. To demonstrate the capabilities of the RAT, we performed three validation studies: (1) a 4-d experiment measuring circadian activity patterns; (2) logging of mouse positional information alongside status information from a pellet dispensing device; and (3) control of an optogenetic stimulation system for a real-time place preference (RTPP) brain stimulation reinforcement study. Our design files, build instructions, and code for the RAT implementation are open source and freely available online to facilitate dissemination and further development of the RAT.


Assuntos
Processamento de Imagem Assistida por Computador , Roedores , Animais , Camundongos
8.
J Med Imaging (Bellingham) ; 6(2): 024007, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31205977

RESUMO

Accurate and automated prostate whole gland and central gland segmentations on MR images are essential for aiding any prostate cancer diagnosis system. Our work presents a 2-D orthogonal deep learning method to automatically segment the whole prostate and central gland from T2-weighted axial-only MR images. The proposed method can generate high-density 3-D surfaces from low-resolution ( z axis) MR images. In the past, most methods have focused on axial images alone, e.g., 2-D based segmentation of the prostate from each 2-D slice. Those methods suffer the problems of over-segmenting or under-segmenting the prostate at apex and base, which adds a major contribution for errors. The proposed method leverages the orthogonal context to effectively reduce the apex and base segmentation ambiguities. It also overcomes jittering or stair-step surface artifacts when constructing a 3-D surface from 2-D segmentation or direct 3-D segmentation approaches, such as 3-D U-Net. The experimental results demonstrate that the proposed method achieves 92.4 % ± 3 % Dice similarity coefficient (DSC) for prostate and DSC of 90.1 % ± 4.6 % for central gland without trimming any ending contours at apex and base. The experiments illustrate the feasibility and robustness of the 2-D-based holistically nested networks with short connections method for MR prostate and central gland segmentation. The proposed method achieves segmentation results on par with the current literature.

9.
eNeuro ; 6(4)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31235468

RESUMO

Physical activity is a critical behavioral variable in many research studies and is, therefore, important to quantify. However, existing methods for measuring physical activity have limitations which include high expense, specialized caging or equipment, and high computational overhead. To address these limitations, we present an open-source, cost-effective, device for measuring rodent activity. Our device is battery powered and designed to be placed in vivarium home cages to enable high-throughput, long-term operation with minimal investigator intervention. The primary aim of this study was to assess the feasibility of using passive infrared (PIR) sensors and microcontroller-based dataloggers in a rodent home cages to collect physical activity records. To this end, we developed an open-source PIR based data-logging device called the rodent activity detector (RAD). We publish the design files and code so others can readily build the RAD in their own labs. To demonstrate its utility, we used the RAD to collect physical activity data from 40 individually housed mice for up to 10 weeks. This dataset demonstrates the ability of the RAD to (1) operate in a high-throughput installation, (2) detect high-fat diet (HFD)-induced changes in physical activity, and (3) quantify circadian rhythms in individual animals. We further validated the data output of the RAD with simultaneous video tracking of mice in multiple caging configurations, to determine the features of physical activity that it detects. The RAD is easy to build, economical, and fits in vivarium caging. The scalability of such devices will enable high-throughput studies of physical activity in research studies.


Assuntos
Automação Laboratorial/instrumentação , Automação Laboratorial/métodos , Comportamento Animal , Atividade Motora , Animais , Desenho de Equipamento , Raios Infravermelhos , Masculino , Camundongos Endogâmicos C57BL , Reconhecimento Automatizado de Padrão
10.
Front Aging Neurosci ; 10: 281, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319392

RESUMO

Monitoring age-related changes in motor function can be used to identify deviations that represent underlying diseases for which early diagnosis is often paramount for efficacious, interventional therapies. Currently, the availability of cost-effective and reliable diagnostic tools capable of routine monitoring is limited. Adequate diagnostic systems are needed to identify, monitor and distinguish early subclinical symptoms of neurological diseases from normal aging-associated changes. Herein, we describe the development, initial validation and reliability of the Hand-Arm Movement Monitoring System (HAMMS), a video-based data acquisition system built using a programmable, versatile platform for acquiring temporal and spatial metrics of hand and arm movements. A healthy aging population of 111 adults were used to evaluate the HAMMS via a repetitive motion test of changing target size. The test required participants to move a fiducial on their hand between two targets presented on a video monitor. The test-retest reliability based on Intraclass Correlation Coefficient (ICCs) for the system ranged from 0.56 to 0.87 and the Linear Correlation Coefficients (LCCs) ranged from 0.58 to 0.87. Average speed, average acceleration, speed error and center offset all demonstrated a positive correlation with age. Using an intertarget path of hand motion, we observed an age-dependent increase in the average number of points outside the most direct motion path, indicating a reduction in hand-arm movement control with age. The reliability, flexibility and programmability of the HAMMS makes this low cost, video-based platform an effective tool for evaluating longitudinal changes in hand-arm related movements and a potential diagnostic device for neurological diseases where hand-arm movements are affected.

11.
Stem Cell Reports ; 10(1): 300-313, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29233554

RESUMO

Pluripotent stem cells can be differentiated into 3D retinal organoids, with major cell types self-patterning into a polarized, laminated architecture. In static cultures, organoid development may be hindered by limitations in diffusion of oxygen and nutrients. Herein, we report a bioprocess using rotating-wall vessel (RWV) bioreactors to culture retinal organoids derived from mouse pluripotent stem cells. Organoids in RWV demonstrate enhanced proliferation, with well-defined morphology and improved differentiation of neurons including ganglion cells and S-cone photoreceptors. Furthermore, RWV organoids at day 25 (D25) reveal similar maturation and transcriptome profile as those at D32 in static culture, closely recapitulating spatiotemporal development of postnatal day 6 mouse retina in vivo. Interestingly, however, retinal organoids do not differentiate further under any in vitro condition tested here, suggesting additional requirements for functional maturation. Our studies demonstrate that bioreactors can accelerate and improve organoid growth and differentiation for modeling retinal disease and evaluation of therapies.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Organoides/metabolismo , Células-Tronco Pluripotentes/metabolismo , Retina/metabolismo , Animais , Camundongos , Camundongos Transgênicos , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Retina/citologia
12.
J Med Imaging (Bellingham) ; 4(4): 041302, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28840173

RESUMO

Accurate automatic segmentation of the prostate in magnetic resonance images (MRI) is a challenging task due to the high variability of prostate anatomic structure. Artifacts such as noise and similar signal intensity of tissues around the prostate boundary inhibit traditional segmentation methods from achieving high accuracy. We investigate both patch-based and holistic (image-to-image) deep-learning methods for segmentation of the prostate. First, we introduce a patch-based convolutional network that aims to refine the prostate contour which provides an initialization. Second, we propose a method for end-to-end prostate segmentation by integrating holistically nested edge detection with fully convolutional networks. Holistically nested networks (HNN) automatically learn a hierarchical representation that can improve prostate boundary detection. Quantitative evaluation is performed on the MRI scans of 250 patients in fivefold cross-validation. The proposed enhanced HNN model achieves a mean ± standard deviation. A Dice similarity coefficient (DSC) of [Formula: see text] and a mean Jaccard similarity coefficient (IoU) of [Formula: see text] are used to calculate without trimming any end slices. The proposed holistic model significantly ([Formula: see text]) outperforms a patch-based AlexNet model by 9% in DSC and 13% in IoU. Overall, the method achieves state-of-the-art performance as compared with other MRI prostate segmentation methods in the literature.

14.
Biomed Opt Express ; 3(1): 192-205, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22254179

RESUMO

In this paper we discuss results based on using instrumental motion as a signal rather than treating it as noise in Near Infra-Red (NIR) imaging. As a practical application to demonstrate this approach we show the design of a novel NIR hematoma detection device. The proposed device is based on a simplified single source configuration with a dual separation detector array and uses motion as a signal for detecting changes in blood volume in the dural regions of the head. The rapid triage of hematomas in the emergency room will lead to improved use of more sophisticated/expensive imaging facilities such as CT/MRI units. We present simulation results demonstrating the viability of such a device and initial phantom results from a proof of principle device. The results demonstrate excellent localization of inclusions as well as good quantitative comparisons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA