Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Opt Express ; 32(5): 7720-7730, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439447

RESUMO

Hollow-core optical fibers can offer broadband, single mode guidance in the UV-visible-NIR wavelength range, with the potential for low-loss, solarization-free operation, making them desirable and potentially disruptive for a wide range of applications. To achieve this requires the fabrication of fibers with <300nm anti-resonant membranes, which is technically challenging. Here we investigate the underlying fluid dynamics of the fiber fabrication process and demonstrate a new three-stage fabrication approach, capable of delivering long (∼350m) lengths of fiber with the desired thin-membranes.

2.
Opt Express ; 32(12): 20459-20470, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38859427

RESUMO

When a hollow core fiber is drawn, the core and cladding holes within the internal cane geometry are pressurized with an inert gas to enable precise control over the internal microstructure of the fiber and counteract surface tension forces. Primarily by considering the temperature drop as the fiber passes through the furnace and the geometrical transformation of the internal microstructure from preform-to-fiber, we recently established that the gas pressure within the final 'as-drawn' fiber is substantially below atmospheric pressure. We have also established that slight changes in the gas refractive index within the core and surrounding cladding holes induced by changes in gas pressure are sufficient to significantly affect both the modality and loss of the fiber. Here we demonstrate, through both simulations and experimental measurements, that the combination of these effects leads to transient changes in the fiber's attenuation when the fibers are opened to atmosphere post-fabrication. It is important to account for this phenomenon for accurate fiber characterization, particularly when long lengths of fiber are drawn where it could take many weeks for every part of the internal microstructure to reach atmospheric pressure.

3.
Sensors (Basel) ; 24(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38676099

RESUMO

Label-free and multiphoton micro-endoscopy can transform clinical histopathology by providing an in situ tool for diagnostic imaging and surgical treatment in diseases such as cancer. Key to a multiphoton imaging-based micro-endoscopic device is the optical fiber, for distortion-free and efficient delivery of ultra-short laser pulses to the sample and effective signal collection. In this work, we study a new hollow-core (air-filled) double-clad anti-resonant fiber (DC-ARF) as a high-performance candidate for multiphoton micro-endoscopy. We compare the fiber characteristics of the DC-ARF with a single-clad anti-resonant fiber (SC-ARF) and a solid core fiber (SCF). In this work, while the DC-ARF and the SC-ARF enable low-loss (<0.2 dBm-1), close to dispersion-free excitation pulse delivery (<10% pulse width increase at 900 nm per 1 m fiber) without any induced non-linearities, the SCF resulted in spectral broadening and pulse-stretching (>2000% of pulse width increase at 900 nm per 1 m fiber). An ideal optical fiber endoscope needs to be several meters long and should enable both excitation and collection through the fiber. Therefore, we performed multiphoton imaging on endoscopy-compatible 1 m and 3 m lengths of fiber in the back-scattered geometry, wherein the signals were collected either directly (non-descanned detection) or through the fiber (descanned detection). Second harmonic images were collected from barium titanate crystals as well as from biological samples (mouse tail tendon). In non-descanned detection conditions, the ARFs outperformed the SCF by up to 10 times in terms of signal-to-noise ratio of images. Significantly, only the DC-ARF, due to its high numerical aperture (NA) of 0.45 and wide-collection bandwidth (>1 µm), could provide images in the de-scanned detection configuration desirable for endoscopy. Thus, our systematic characterization and comparison of different optical fibers under different image collection configurations, confirms and establishes the utility of DC-ARFs for high-performing label-free multiphoton imaging-based micro-endoscopy.

4.
Opt Express ; 31(14): 23419-23429, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37475426

RESUMO

We report a high-energy, picosecond, mid-infrared (MIR) optical parametric oscillator (OPO), in which a length of hollow-core-fiber (HCF) is employed to enable operation at 1-MHz repetition rate in a compact cavity format. The OPO is synchronously pumped by an ytterbium-doped-fiber (YDF) master-oscillator-power-amplifier (MOPA) system, seeded by a 1040-nm gain-switched laser diode (GSLD). Using periodically poled lithium niobate (PPLN) as the nonlinear crystal, the OPO generates signal and idler beams with tunable wavelengths in the range of 1329-1641 nm and 2841-4790 nm, respectively. The OPO provides 137-ps pulses with a maximum signal energy of 10.05 µJ at 1600 nm and a maximum idler energy of 5.13 µJ at 2967 nm. This, to the best of our knowledge, represents the highest energy MIR pulses, as well as the highest total converted pulse energy (15.18 µJ), ever achieved from a fiber laser pumped picosecond OPO.

5.
Opt Express ; 31(22): 36928-36939, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017832

RESUMO

Antiresonant hollow-core fibers (HCFs) are rapidly establishing themselves as a promising technology with the potential to overcome the limitations faced by conventional solid-core silica fibers. The optical properties and performance of these fibers depend critically on the precise control and uniformity of their delicate glass microstructure at all points along the length of the fiber. Their fabrication is complicated by the inability to monitor this microstructure without cutting into the fiber and viewing a sample under a microscope during the fiber draw. Here we show that a non-destructive interferometric technique using side-illumination of the fiber and first demonstrated for simple tubular fibers can be used to measure the diameters of all nested capillary elements of two promising HCF designs: the nested and double-nested antiresonant nodeless fiber (NANF and DNANF, respectively) with accuracy comparable to a microscope measurement. We analyze the complexities enabled by the presence of multiple nested capillaries in the structure and present techniques to overcome them. These measurements, carried out on a small (∼50 cm) length of fiber, require less than 60s to collect and process the data for all capillaries. We also show how we can use this technique to detect defects in the fiber, making it a potential candidate for real-time in-situ monitoring of NANF and DNANF structures during fabrication.

6.
Opt Express ; 31(15): 24739-24748, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475293

RESUMO

Fast (nanoseconds) optical wavelength switching is emerging as a viable solution to scaling the size and capacity of intra-data center interconnection. A key enabling technology for such systems is low-jitter optical clock synchronization, which enables sub-nanosecond clock and data recovery for optically switched frames using low-cost methods such as clock phase caching. We propose and demonstrate real-time low-latency wavelength-switched clock-synchronized intra-data center interconnection at 51.2 GBd using a fast tunable laser (with ns scale switching time) and ultra-stable-latency hollow core fiber (HCF) for optically-switched data center networks. For wavelength-switched systems, we achieve a physical layer latency below 46 ns, consisting of 28 ns transceiver latency and a 18 ns inter-packet gap. Finally, we show that by exploiting the low chromatic dispersion and thermally-stable latency features of HCF, active clock phase tracking can be entirely eliminated.

7.
Opt Express ; 31(19): 30227-30238, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37710569

RESUMO

We report the flexible on-target delivery of 800 nm wavelength, 5 GW peak power, 40 fs duration laser pulses through an evacuated and tightly coiled 10 m long hollow-core nested anti-resonant fiber by positively chirping the input pulses to compensate for the anomalous dispersion of the fiber. Near-transform-limited output pulses with high beam quality and a guided peak intensity of 3 PW/cm2 were achieved by suppressing plasma effects in the residual gas by pre-pumping the fiber with laser pulses after evacuation. This appears to cause a long-term removal of molecules from the fiber core. Identifying the fluence at the fiber core-wall interface as the damage origin, we scaled the coupled energy to 2.1 mJ using a short piece of larger-core fiber to obtain 20 GW at the fiber output. This scheme can pave the way towards the integration of anti-resonant fibers in mJ-level nonlinear optical experiments and laser-source development.

8.
Opt Express ; 31(9): 15035-15044, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157354

RESUMO

By modifying the interconnection design between standard single-mode fiber (SSMF) and nested antiresonant nodeless type hollow-core fiber (NANF), we create an air gap between SSMF and NANF. This air gap enables the insertion of optical elements, thus providing additional functions. We show low-loss coupling using various graded-index multimode fibers acting as mode-field adapters resulting in different air-gap distances. Finally, we test the gap functionality by inserting a thin glass sheet in the air gap, which forms a Fabry-Perot interferometer and works as a filter with an overall insertion loss of only 0.31 dB.

9.
Opt Express ; 31(25): 41191-41201, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087524

RESUMO

We demonstrate a multi-watt, picosecond pulse duration laser source by exploiting a cascaded Raman process to the second Stokes signal at a wavelength of 2.58 µm in a methane-filled Nested Anti-Resonant Nodeless fiber from a 1 µm disk laser source. A maximum average power of 2.89 W (14.45 µJ) is produced in a 160 cm length of custom-designed and in-house fabricated fiber filled with methane at a pressure of 2 bar. The impact of gas pressure and propagation distance on the second Stokes signal power are investigated experimentally. The experimental results are simulated by solving the Generalized Nonlinear Schrodinger Equation with the experiment carefully modelled by accounting for the impacts of pressure dependent gas-light interactions along the pressure gradient of the fiber. This work offers a laser source for a variety of applications as well as expanding the modelling space to methane filled fibers including pressure gradients, and nonlinear optical activity in the presence of infrared gas absorption.

10.
Opt Express ; 31(21): 34064-34073, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859171

RESUMO

By exploiting the excellent short-term phase stability between consecutive pulses from a free-running optical parametric oscillator frequency comb, we report the first example of hollow-core fiber-delivered heterodyne spectroscopy in the 3.1-3.8 µm wavelength range. The technique provides a means of spectroscopically interrogating a sample situated at the distal end of a fiber, with all electronics and light sources situated at the proximal end and with an inherent capability to suppress spectroscopically interfering features present in the free-space and in-fiber delivery path. Using a silica anti-resonant, hollow-core delivery fiber, we demonstrate high quality transmission and attenuated total reflectance spectroscopy of a plastic sample for fiber lengths of up to 40 m, significantly exceeding the few-meter lengths typically possible using solid-core fibers. The technique opens a route to implementing multi-species spectroscopic monitoring in remote and / or hostile industrial environments and medical applications.

11.
Opt Lett ; 48(10): 2772, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37186762

RESUMO

In the original publication of our research article "Hollow core fiber Fabry-Perot interferometers with reduced sensitivity to temperature" [Opt. Lett.47, 2510 (2022)10.1364/OL.456589OPLEDP0146-9592], we identified an error that requires correction. The authors sincerely apologize for any confusion that may have arisen from this error. The correction does not affect the overall conclusions of the paper.

12.
Opt Lett ; 48(3): 763-766, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723583

RESUMO

Optical fibers with a low thermal coefficient of delay (TCD) have been developed for frequency and timing transmission/distribution. However, their temperature sensitivity changes as a function of temperature and, to date, no study of such fibers has demonstrated improved performance over extended temperature ranges, especially at sub-zero temperatures. Here, we show that a hollow core fiber (HCF) with a thin acrylate coating can have a TCD within ±2.0 ps/km/°C over a broad temperature range from -150°C to +60°C. In addition, this thinly coated HCF can be fully insensitive to temperature around -134°C, making it of interest, e.g., for laser stabilization close to cryogenic temperatures.

13.
Opt Lett ; 48(23): 6224-6227, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039232

RESUMO

This Letter reports the first, to the best of our knowledge, spectral radiation induced attenuation (RIA) measurements of nested anti-resonant nodeless hollow-core fibers (NANFs). A 5-tube NANF, alongside a solid-core single-mode radiation resistant fiber (SM-RRF), was irradiated under γ-ray up to 101 kGy (SiO2) and under x-ray up to 241 kGy (SiO2). No RIA was observed in the NANF in the second half of the O-band, the S-band, the C-band, and the L-band. The NANF showed a reduction of absorption bands associated with water and HCl under irradiation. Three new attenuation peaks were radiolytically induced and are attributed to the creation of HNO3. These peaks are centered respectively at 1441 nm, 1532 nm, and 1628 nm, with a full width at half maximum (FWHM) of, respectively, 10 nm, 12 nm, and 12 nm. These results demonstrate that the wide bandwidth range of NANFs is essentially unaffected by radiation, but the internal gas contents of the NANF must be managed to avoid producing undesirable spectral features through radiolytic reactions. Wide spectral regions almost unaffected by the ionizing radiation could open new possibilities for the use of NANF in harsh radiation environments.

14.
Opt Express ; 30(22): 40425-40440, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36298976

RESUMO

We investigate the design of hollow-core fibers for the delivery of 10s of kilowatt average power from multi-mode laser sources. For such lasers, delivery through solid-core fibers is typically limited by nonlinear optical effects to 10s of meters of distance. Techniques are presented here for the design of multi-mode anti-resonant fibers that can efficiently couple and transmit light from these lasers. By numerical simulation we analyze the performance of two anti-resonant fibers targeting continuous-wave lasers with M2 up to 13 and find they are capable of delivering MW-level power over several kilometers with low leakage loss, and at bend radii as small as 35 cm. Pulsed lasers are also investigated and numerical simulations indicate that optimized fibers could in principle deliver nanosecond pulses with greater than 100 mJ pulse energy over distances up to 1 km. This would be orders of magnitude higher power and longer distances than in typical machining applications using the best available solid core fibers.

15.
Opt Express ; 30(20): 37006-37014, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258619

RESUMO

We report simultaneous low coupling loss (below 0.2 dB at 1550 nm) and low back-reflection (below -60 dB in the 1200-1600 nm range) between a hollow core fiber and standard single mode optical fiber obtained through the combination of an angled interface and an anti-reflective coating. We perform experimental optimization of the interface angle to achieve the best combination of performance in terms of the coupling loss and back-reflection suppression. Furthermore, we examine parasitic cross-coupling to the higher-order modes and show that it does not degrade compared to the case of a flat interface, keeping it below -30 dB and below -20 dB for LP11 and LP02 modes, respectively.

16.
Opt Express ; 30(5): 7044-7052, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35299476

RESUMO

High-resolution multi-species spectroscopy is achieved by delivering broadband 3-4-µm mid-infrared light through a 4.5-meter-long silica-based hollow-core optical fiber. Absorptions from H37Cl, H35Cl, H2O and CH4 present in the gas within the fiber core are observed, and the corresponding gas concentrations are obtained to 5-ppb precision using a high-resolution Fourier-transform spectrometer and a full-spectrum multi-species fitting algorithm. We show that by fully fitting the narrow absorption features of these light molecules their contributions can be nulled, enabling further spectroscopy of C3H6O and C3H8O contained in a Herriott cell after the fiber. As a demonstration of the potential to extend fiber-delivered broadband mid-infrared spectroscopy to significant distances, we present a high-resolution characterization of the transmission of a 63-meter length of hollow-core fiber, fully fitting the input and output spectra to obtain the intra-fiber gas concentrations. We show that, despite the fiber not having been purged, useful spectroscopic windows are still preserved which have the potential to enable hydrocarbon spectroscopy at the distal end of fibers with lengths of tens or even hundreds of meters.

17.
Opt Express ; 30(24): 43317-43329, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36523032

RESUMO

We demonstrate recent progress in the development of a Raman gas sensor using a single cladding ring anti-resonant hollow core micro-structured optical fiber (HC-ARF) and a low power pump source. The HC-ARF was designed specifically for low attenuation and wide bandwidth in the visible spectral region and provided low loss at both the pump wavelength (532 nm) and Stokes wavelengths up to a Raman shift of 5000 cm-1. A novel selective core pressurization scheme was also implemented to further reduce the confinement loss, improving the Raman signal enhancement by a factor of 1.9 compared to a standard fiber filling scheme. By exploiting longer lengths of fiber, direct detection of both methane and hydrogen at concentrations of 5 and 10 ppm respectively is demonstrated and a noise equivalent limit-of-detection of 0.15 ppm is calculated for methane.

18.
Opt Express ; 30(17): 31310-31321, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242216

RESUMO

Today's lowest-loss hollow core fibers are based on antiresonance guidance. They have been shown both theoretically and experimentally to have very low levels of backscattering arising from the fiber structure - 45 dB below that of traditional optical fibers with a solid silica glass core. This makes their longitudinal characterization using conventional reflectometric techniques very challenging. However, it was recently estimated that when filled with air, their backscattering coefficient increases to about 30 dB below that of standard solid core fibers. This level should be measurable with commercially available high performance optical time domain reflectometers (OTDR). Here we demonstrate - for the first time to the best of our knowledge - the measurement of backscattering from the air inside a hollow core fiber. We show that the characterization of multi-km long hollow core fibers with 15 m spatial resolution is possible using a commercial OTDR instrument. To benefit from its full dynamic range, we strongly suppress the 4% back-reflections that ordinarily occur at the OTDR's standard fiber output when directly-connected to a hollow core fiber. Furthermore, low coupling loss into the hollow core fiber (0.3 dB in our experiment) also helps to maximize the achievable OTDR signal-to-noise ratio. This approach enables distributed characterization and fault-finding in low-loss hollow core fibers, a topic of increasing importance as these fibers are now starting to be installed in commercial optical communication networks.

19.
Opt Lett ; 47(14): 3600-3603, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35838740

RESUMO

A compact, mid-infrared (MIR), synchronously pumped, fiber-feedback optical parametric oscillator (OPO) based on periodically poled lithium niobate (PPLN) is developed with tunable signal and idler wavelength ranges of 1472.0-1758.2 nm and 2559.1-3562.7 nm, respectively. A solid-core SMF-28 fiber and a hollow-core fiber (HCF) were used as the feedback fibers in order to compare the effect of their substantially different levels of nonlinearity. The OPO generates 1-MHz, 120-ps, MIR pulses with up to 1.50-µJ pulse energy and 11.7-kW peak power.

20.
Opt Lett ; 47(10): 2510-2513, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35561388

RESUMO

We demonstrate a 3× thermal phase sensitivity reduction for a hollow-core fiber (HCF) Fabry-Perot interferometer by winding the already low temperature sensitivity HCF on to a spool made from an ultralow thermal expansion material. A record low room temperature fiber coil phase thermal sensitivity of 0.13 ppm/K is demonstrated. The result is of particular interest in reducing the thermal sensitivity of HCF-based Fabry-Perot interferometers (for which existing thermal sensitivity reduction methods are not applicable). Our theoretical analysis predicts that significantly lower (or even zero) thermal sensitivity should be achievable when a spool with a slightly negative coefficient of thermal expansion is used. We also suggest a method to fine-tune the thermal sensitivity and analyze it with simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA