Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 522(7555): 192-6, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26062510

RESUMO

Metamaterials are artificial optical media composed of sub-wavelength metallic and dielectric building blocks that feature optical phenomena not present in naturally occurring materials. Although they can serve as the basis for unique optical devices that mould the flow of light in unconventional ways, three-dimensional metamaterials suffer from extreme propagation losses. Two-dimensional metamaterials (metasurfaces) such as hyperbolic metasurfaces for propagating surface plasmon polaritons have the potential to alleviate this problem. Because the surface plasmon polaritons are guided at a metal-dielectric interface (rather than passing through metallic components), these hyperbolic metasurfaces have been predicted to suffer much lower propagation loss while still exhibiting optical phenomena akin to those in three-dimensional metamaterials. Moreover, because of their planar nature, these devices enable the construction of integrated metamaterial circuits as well as easy coupling with other optoelectronic elements. Here we report the experimental realization of a visible-frequency hyperbolic metasurface using single-crystal silver nanostructures defined by lithographic and etching techniques. The resulting devices display the characteristic properties of metamaterials, such as negative refraction and diffraction-free propagation, with device performance greatly exceeding those of previous demonstrations. Moreover, hyperbolic metasurfaces exhibit strong, dispersion-dependent spin-orbit coupling, enabling polarization- and wavelength-dependent routeing of surface plasmon polaritons and two-dimensional chiral optical components. These results open the door to realizing integrated optical meta-circuits, with wide-ranging applications in areas from imaging and sensing to quantum optics and quantum information science.

2.
Nat Mater ; 11(8): 700-9, 2012 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-22772655

RESUMO

Ferroelectricity in finite-dimensional systems continues to arouse interest, motivated by predictions of vortex polarization states and the utility of ferroelectric nanomaterials in memory devices, actuators and other applications. Critical to these areas of research are the nanoscale polarization structure and scaling limit of ferroelectric order, which are determined here in individual nanocrystals comprising a single ferroelectric domain. Maps of ferroelectric structural distortions obtained from aberration-corrected transmission electron microscopy, combined with holographic polarization imaging, indicate the persistence of a linearly ordered and monodomain polarization state at nanometre dimensions. Room-temperature polarization switching is demonstrated down to ~5 nm dimensions. Ferroelectric coherence is facilitated in part by control of particle morphology, which along with electrostatic boundary conditions is found to determine the spatial extent of cooperative ferroelectric distortions. This work points the way to multi-Tbit/in(2) memories and provides a glimpse of the structural and electrical manifestations of ferroelectricity down to its ultimate limits.

3.
Phys Rev Lett ; 111(3): 037401, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23909359

RESUMO

Infrared absorption measurements of amorphous and crystalline nanoparticles of GeTe reveal a localized surface plasmon resonance (LSPR) mode in the crystalline phase that is absent in the amorphous phase. The LSPR mode emerges upon crystallization of amorphous nanoparticles. The contrasting plasmonic properties are elucidated with scanning tunneling spectroscopy measurements indicating a Burstein-Moss shift of the band gap in the crystalline phase and a finite density of electronic states throughout the band gap in the amorphous phase that limits the effective free carrier density.

4.
Nano Lett ; 11(3): 1147-52, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21338071

RESUMO

The question of the nature and stability of polar ordering in nanoscale ferroelectrics is examined with colloidal nanocrystals of germanium telluride (GeTe). We provide atomic-scale evidence for room-temperature polar ordering in individual nanocrystals using aberration-corrected transmission electron microscopy and demonstrate a reversible, size-dependent polar-nonpolar phase transition of displacive character in nanocrystal ensembles. A substantial linear component of the distortion is observed, which is in contrast with theoretical reports predicting a toroidal state.

5.
J Am Chem Soc ; 133(7): 2044-7, 2011 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-21280629

RESUMO

Germanium telluride (GeTe) exhibits interesting materials properties, including a reversible amorphous-to-crystalline phase transition and a room-temperature ferroelectric distortion, and has demonstrated potential for nonvolatile memory applications. Here, a colloidal approach to the synthesis of GeTe nanocrystals over a wide range of sizes is demonstrated. These nanocrystals have size distributions of 10-20% and exist in the rhombohedral structure characteristic of the low-temperature polar phase. The production of nanocrystals of widely varying sizes is facilitated by the use of Ge(II) precursors with different reactivities. A transition from a monodomain state to a state with multiple polarization domains is observed with increasing size, leading to the formation of richly faceted nanostructures. These results provide a starting point for deeper investigation into the size-scaling and fundamental nature of polar-ordering and phase-change processes in nanoscale systems.

6.
Adv Mater ; 30(4)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29205949

RESUMO

Defect-based color centers in wide-bandgap crystalline solids are actively being explored for quantum information science, sensing, and imaging. Unfortunately, the luminescent properties of these emitters are frequently degraded by blinking and photobleaching that arise from poorly passivated host crystal surfaces. Here, a new method for stabilizing the photoluminescence and charge state of color centers based on epitaxial growth of an inorganic passivation layer is presented. Specifically, carbon antisite-vacancy pairs (CAV centers) in 4H-SiC, which serve as single-photon emitters at visible wavelengths, are used as a model system to demonstrate the power of this inorganic passivation scheme. Analysis of CAV centers with scanning confocal microscopy indicates a dramatic improvement in photostability and an enhancement in emission after growth of an epitaxial AlN passivation layer. Permanent, spatially selective control of the defect charge state can also be achieved by exploiting the mismatch in spontaneous polarization at the AlN/SiC interface. These results demonstrate that epitaxial inorganic passivation of defect-based quantum emitters provides a new method for enhancing photostability, emission, and charge state stability of these color centers.

8.
Nanoscale ; 8(12): 6237-48, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26762871

RESUMO

Perovskite oxides exhibit rich structural complexity and a broad range of functional properties, including ferroelectricity, ferromagnetism, and superconductivity. The development of aberration correction for the transmission electron microscope and concurrent progress in electron spectroscopy, electron holography, and other techniques has fueled rapid progress in the understanding of the physics and chemistry of these materials. New techniques based on the transmission electron microscope are first surveyed, and the applications of these techniques for the study of the structure, chemistry, electrostatics, and dynamics of perovskite oxides are then explored in detail, with a particular focus on ferroelectric materials.

9.
J Phys Chem B ; 109(30): 14314-8, 2005 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16852799

RESUMO

Nanocrystals of the wide band gap semiconductor zinc oxide of controllable morphologies were synthesized by a simple thermal decomposition method. The predominating factor in determining the morphology (spheres, triangular prisms, and rods) was the solvent, selected on the basis of coordinating power. The nanoparticles were structurally analyzed, and the photoluminescence of each shape was compared. The intensity of the green band emission, common to many ZnO structures, was found to vary with morphology. The strongest green band intensity corresponded to the shape with the largest surface/volume ratio and could be attributed to surface oxygen vacancies. Control over the morphology of ZnO at the nanoscale is presented as a means to control the green band emission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA